INNOVATIONS METHOD APPLIED TO ESTIMATION OF GAUSS-MARKOV PROCESSES

Neste trabalho aplica-se o método de inovações ao problema de estimação de um processo Gauss-Markov provindo de um sistema multivariável descrito por uma equação de estado. Após a dedução das fórmulas gerais de estimação em termos do processo de inovações obtém-se os algoritmos recursivos do fil...

Full description

Bibliographic Details
Main Author: AUGUSTO CESAR GADELHA VIEIRA
Other Authors: JEAN PAUL GRAVIER
Language:Portuguese
Published: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 1973
Online Access:http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9919@1
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9919@2
Description
Summary:Neste trabalho aplica-se o método de inovações ao problema de estimação de um processo Gauss-Markov provindo de um sistema multivariável descrito por uma equação de estado. Após a dedução das fórmulas gerais de estimação em termos do processo de inovações obtém-se os algoritmos recursivos do filtro de Kalman-Bucy para o caso não linear contínuo, bem como, para o caso linear continuo e discreto. A seguir, faz-se a representação do processo como saída de um sistema causal e causalmente reversível excitado por um ruído branco, chamada representação por inovações (RI). Os parâmetros deste sistema são determinados a partir da covariância do processo. Finalmente, é desenvolvido um algoritmo para a determinação de uma RI de um processo estacionário provindo de um sistema desconhecido, invariante no tempo. === In this work the innovations method is applied to the estimation problem of a Gauss-Markov process, output of a multivariable system described by a state equation. After obtaining general estimation formulas in terms of the innovations process, the Kalman-Bucy filter recursive algorithms are derived for the nonlinear continuous case as well as for the linear discrete and continuous case. Next, it is given a representation of the process as an output of a causal and causally reversible system to a white noise, known as the innovation representation. The parameters of such a system are determined from the process covariance. Finally, an algorithm is built to obtain an IR of a stationary process coming from an unknown time-invariant system.