A BAYESIAN PROCEDUCE TO ESTIMATE THE INDIVIDUAL CONTRIBUTION OF INDIVIDUAL END USES IN RESIDENCIAL ELECTRICAL ENERGY CONSUMPTION

CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO === Esta dissertação investiga a utilização do Modelo de Regressão Multivariada Seemingly Unrelated sob uma perspectiva Bayesiana, na estimação das curvas de carga dos principais eletrodomésticos. Será utilizada uma estrutura de Deman...

Full description

Bibliographic Details
Main Author: LUIS ALBERTO NAVARRO HUAMANI
Other Authors: REINALDO CASTRO SOUZA
Language:Portuguese
Published: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 1997
Online Access:http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8691@1
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8691@2
Description
Summary:CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO === Esta dissertação investiga a utilização do Modelo de Regressão Multivariada Seemingly Unrelated sob uma perspectiva Bayesiana, na estimação das curvas de carga dos principais eletrodomésticos. Será utilizada uma estrutura de Demanda Condicional (CDA), consideradas de especial interesse no setor comercial e residencial para o gerenciamento pelo lado da demanda (Demand Side Management) dos hábitos dos consumidores residenciais. O trabalho envolve três partes principais: uma apresentação das metodologias estatísticas clássicas usadas para estimar as curvas de cargas; um estudo sobre Modelos de Regressão Multivariada Seemingly Unrelated usando uma aproximação Bayesiana. E por último o desenvolvimento do modelo num estudo de caso. Na apresentação das metodologias clássicas fez-se um levantamento preliminar da estrutura CDA para casos univariados usando Regressão Múltipla, e multivariada usando Regressão Multivariada Seemingly Unrelated, onde o desempenho desta estrutura depende da estrutura de correlação entre os erros de consumo horário durante um dia específico; assim como as metodologias usadas para estimar as curvas de cargas. No estudo sobre Modelos de Regressão Multivariada Seemingly Unrelated a partir da abordagem Bayesiana considerou-se um fator importante no desempenho da metodologia de estimação, a saber: informação a priori. No desenvolvimento do modelo, foram estimadas as curvas de cargas dos principais eletrodomésticos numa abordagem Bayesiana mostrando o desempenho da metodologia na captura de ambos tipos de informação: estimativas de engenharia e estimativas CDA. Os resultados obtidos avaliados pelo método acima comprovaram superioridade na explicação de dados em relação aos modelos clássicos. === The present dissertation investigates the use of multivariate regression models from a Bayesian point of view. These models were used to estimate the electric load behavior of household end uses. A conditional demand structure was used considering its application to the demand management of the residential and commercial consumers. This work is divided in three main parts: a description of the classical statistical methodologies used for the electric load prediction, a study of the multivariate regression models using a Bayesian approach and a further development of the model applied to a case study. A preliminary revision of the CDA structure was done for univariate cases using multiple regression. A similar revision was done for other cases using multivariate regression (Seemingly Unrelated). In those cases, the behavior of the structure depends on the correlation between a minimization of the daily demand errors and the methodologies used for the electric load prediction. The study on multivariate regression models (Seemingly Unrelated) was done from a Bayesian point of view. This kind of study is very important for the prediction methodology. When developing the model, the electric load curves of the main household appliances were predicted using a Bayesian approach. This fact showed the performance of the metodology on the capture of two types of information: Engineering prediction and CDA prediction. The results obtained using the above method, for describing the data, were better than the classical models.