DECOMPOSITION OF HILBERT-SPACE CONTRACTIONS

CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO === O problema de decomposição de contrações em espaços de Hilbert é motivado pelo problema do subespaço invariante, o qual é um famoso problema em aberto em Teoria de Operadores. Se T (pertence) B [H] é uma contração, define- se o ope...

Full description

Bibliographic Details
Main Author: DENISE DE OLIVEIRA
Other Authors: CARLOS KUBRUSLY
Language:Portuguese
Published: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 1995
Online Access:http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8151@1
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8151@2
Description
Summary:CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO === O problema de decomposição de contrações em espaços de Hilbert é motivado pelo problema do subespaço invariante, o qual é um famoso problema em aberto em Teoria de Operadores. Se T (pertence) B [H] é uma contração, define- se o operador A como o limite forte da seqüência { T* n Tn (pertence) B [H]; n > ou = 1}. Este operador caracteriza as isometrias, uma vez que T é uma isometria se e somente se A = I. A decomposição de Von Neumann-Wold para isometrias estabelece que toda isometria é a soma direta ortogonal de um Shift unilateral com um operador unitário. O presente trabalho estende a decomposição de Von Neumann-Wold para contrações tais que o operador A é uma projeção ortogonal arbitrária. Através desta decomposição, conclui-se que se uma contração não possui subespaço invariante próprio, então T (pertence) C00 U C01 U C10. uma análise abrangente do efeito dessa nova decomposição é desenvolvida, interceptando a classe de contrações em questão com as classes dos operadores compactos, normais, quasinormais, subnormais, hiponormais e normalóides. Como se conclui que o operador A é uma projeção ortogonal apenas até a classe das contrações quasinormais, também é analisado o quanto o operador A referente a uma contração subnormal não-quasinormal pode se afastar de uma projeção ortogonal. Além disso, estabelece-se para contrações hipornormais o subespaço onde A é uma projeção ortogonal. === Decomposition of Hilbert-space contractions is motivated the invariant subspace problem, which is a famous open problem in Operator Theory. If T (pertenc) B [H] is a contraction, {T*n Tn (pertenc) B [H]; n > = 1} converger strongly. Let the operator A be its (strongly) limit. T is a isometry if and only if A = I. The von Neumann-Wold decomposition for isometries says that a isometry is the direct orthogonal sum of a unilateral shift and a unitary operator. The present work extends the von Neumann-Wold decomposition to a contrataction for wich A is an orthogonal projection. According to such a decomposition it is established that a contractin with no nontrivial invariant subspace is such that T (pertenc) C00 U C01 U C10. it follows a detailed investigation n the impact of such a new decomposition on several classes of operators; viz. compact, normal, quasinormal, subnormal, hyponormal and normaloid. It is verified that the operator A is an orthogonal projection up to the class of all quasinormal contraction T, but not for every subnormal contraction. Thus it is investigated how the operator A, for a susbnormal contraction T, can distanciate from an orthogonal projection, for hyponormal contraction T, is exhibited as well