A ROBUST VISUAL SERVOING APPROACH FOR ROBOTIC FRUIT HARVESTING

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO === COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR === PROGRAMA DE EXCELENCIA ACADEMICA === Neste trabalho, apresenta-se diferentes esquemas de controle servovisuais para tarefas robóticas de colheita de fruta, na presença de incerteza...

Full description

Bibliographic Details
Main Author: JUAN DAVID GAMBA CAMACHO
Other Authors: ANTONIO CANDEA LEITE
Language:English
Published: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 2018
Online Access:http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36539@1
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36539@2
id ndltd-IBICT-oai-MAXWELL.puc-rio.br-36539
record_format oai_dc
collection NDLTD
language English
sources NDLTD
description PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO === COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR === PROGRAMA DE EXCELENCIA ACADEMICA === Neste trabalho, apresenta-se diferentes esquemas de controle servovisuais para tarefas robóticas de colheita de fruta, na presença de incertezas paramétricas nos modelos do sistema. O primeiro esquema combina as abordagens de servovisão baseada em posição (PBVS) e servovisão baseada em imagem (IBVS) para realizar, respectivamente, a aproximação até a fruta e, em seguida, um ajuste fino para a colheita. O segundo esquema usa uma abordagem de servovisão híbrida (HVS) para realizar a tarefa de colheita completa, projetando uma lei de controle adequada que combina vetores de erro definidos no espaço operacional e no espaço da imagem. A fase de detecção utiliza um algoritmo baseado no espaço de cores OTHA e limiar da imagem Otsu para um rápido reconhecimento de frutos maduros em cenários complexos. Além disso, um método de detecção mais preciso emprega uma Rede Neural Convolucional Profunda (DCNN) pré-treinada baseada em uma versão Segnet minimizada para uma inferência rápida durante a execução da tarefa. A localização do objeto é realizada empregando uma técnica de triangulação de imagem, que combina os algoritmos SURF e RANSAC ou ORB e BF-Matcher para extrair a característica da imagem da fruta e associa-lo com o seu ponto correspondente na outra visualização. No entanto, como esses algoritmos exigem um elevado custo computacional para os requisitos da tarefa, um método de estimativa mais rápido utiliza o centróide da fruta e transformação homogênea para descobrir os pontos correspondentes. Finalmente, um esquema de controle em modos deslizantes (SMC) baseado em visão e uma função de monitoramento de comutação são empregados para lidar com incertezas nos parâmetros de calibração do sistema de câmera-robô. Nesse sentido, é possível garantir a estabilidade assintótica e a convergência do erro da característica da imagem, mesmo que o ângulo de desalinhamento, em torno do eixo z, entre os sistemas de coordenadas da câmera e do efetuador seja incerto. === In this work, we present different eye-in-hand visual servoing control schemes applied to a robotic harvesting task of soft fruits in the presence of parametric uncertainties in the system models. The first scheme combines position-based visual servoing (PBVS) and image-based visual servoing (IBVS) approaches in order to perform respectively an approach phase to the fruit and then a fine tuning of the end-effector to harvest. The second scheme uses a hybrid visual servoing (HVS) approach to fulfill the complete harvesting task, by designing a suitable control law which combines error vectors defined in both the image and operational spaces. For detecting the fruits, an algorithm based on the combination of the OHTA color space and Otsu’s threshold method for a fast recognition of mature fruits in complex scenarios. In addition, a more accurate detection method employs a pre-trained deep encoder-decoder algorithm based on a minimized Segnet version for a fast and cheap inference during the task execution. The object localization is accomplished by employing an image triangulation technique, which combines the speeded-up-robust-features (SURF) and the-randomsample-consensus (RANSAC) or the Oriented FAST and Rotated BRIEF and the Brute-Force Matcher (BF-Matcher) algorithms to extract the fruit image feature and match it to its correspondent feature-point into the other view of the stereo camera. However, since these algorithms are computationally expensive for the task requirements, a faster estimation method uses the fruit centroid and a homogeneous transformation for discovering matching points. Finally, a vision-based sliding-mode-control scheme and a switching monitoring function are employed to cope with uncertainties in the calibration parameters of the camera-robot system. In this context, it is possible to guarantee the asymptotic stability and convergence of the image feature error, even if the misalignment angle, around the z-axis, between the camera and end-effector frames is uncertain. 3D computer simulations and preliminary experimental results, obtained with a Mitsubishi robot arm RV-2AJ carrying out a simple strawberry picking task, are included to illustrate the performance and effectiveness of the proposed control scheme.
author2 ANTONIO CANDEA LEITE
author_facet ANTONIO CANDEA LEITE
JUAN DAVID GAMBA CAMACHO
author JUAN DAVID GAMBA CAMACHO
spellingShingle JUAN DAVID GAMBA CAMACHO
A ROBUST VISUAL SERVOING APPROACH FOR ROBOTIC FRUIT HARVESTING
author_sort JUAN DAVID GAMBA CAMACHO
title A ROBUST VISUAL SERVOING APPROACH FOR ROBOTIC FRUIT HARVESTING
title_short A ROBUST VISUAL SERVOING APPROACH FOR ROBOTIC FRUIT HARVESTING
title_full A ROBUST VISUAL SERVOING APPROACH FOR ROBOTIC FRUIT HARVESTING
title_fullStr A ROBUST VISUAL SERVOING APPROACH FOR ROBOTIC FRUIT HARVESTING
title_full_unstemmed A ROBUST VISUAL SERVOING APPROACH FOR ROBOTIC FRUIT HARVESTING
title_sort robust visual servoing approach for robotic fruit harvesting
publisher PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
publishDate 2018
url http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36539@1
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36539@2
work_keys_str_mv AT juandavidgambacamacho arobustvisualservoingapproachforroboticfruitharvesting
AT juandavidgambacamacho umaabordagemdeservovisaorobustaparacolheitaroboticadefrutas
AT juandavidgambacamacho robustvisualservoingapproachforroboticfruitharvesting
_version_ 1718989734076743680
spelling ndltd-IBICT-oai-MAXWELL.puc-rio.br-365392019-03-01T15:45:09Z A ROBUST VISUAL SERVOING APPROACH FOR ROBOTIC FRUIT HARVESTING UMA ABORDAGEM DE SERVOVISÃO ROBUSTA PARA COLHEITA ROBÓTICA DE FRUTAS JUAN DAVID GAMBA CAMACHO ANTONIO CANDEA LEITE ANTONIO CANDEA LEITE PAL JOHAN FROM FERNANDO CESAR LIZARRALDE ANTONIO CANDEA LEITE ANTONIO CANDEA LEITE WOUTER CAARLS PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR PROGRAMA DE EXCELENCIA ACADEMICA Neste trabalho, apresenta-se diferentes esquemas de controle servovisuais para tarefas robóticas de colheita de fruta, na presença de incertezas paramétricas nos modelos do sistema. O primeiro esquema combina as abordagens de servovisão baseada em posição (PBVS) e servovisão baseada em imagem (IBVS) para realizar, respectivamente, a aproximação até a fruta e, em seguida, um ajuste fino para a colheita. O segundo esquema usa uma abordagem de servovisão híbrida (HVS) para realizar a tarefa de colheita completa, projetando uma lei de controle adequada que combina vetores de erro definidos no espaço operacional e no espaço da imagem. A fase de detecção utiliza um algoritmo baseado no espaço de cores OTHA e limiar da imagem Otsu para um rápido reconhecimento de frutos maduros em cenários complexos. Além disso, um método de detecção mais preciso emprega uma Rede Neural Convolucional Profunda (DCNN) pré-treinada baseada em uma versão Segnet minimizada para uma inferência rápida durante a execução da tarefa. A localização do objeto é realizada empregando uma técnica de triangulação de imagem, que combina os algoritmos SURF e RANSAC ou ORB e BF-Matcher para extrair a característica da imagem da fruta e associa-lo com o seu ponto correspondente na outra visualização. No entanto, como esses algoritmos exigem um elevado custo computacional para os requisitos da tarefa, um método de estimativa mais rápido utiliza o centróide da fruta e transformação homogênea para descobrir os pontos correspondentes. Finalmente, um esquema de controle em modos deslizantes (SMC) baseado em visão e uma função de monitoramento de comutação são empregados para lidar com incertezas nos parâmetros de calibração do sistema de câmera-robô. Nesse sentido, é possível garantir a estabilidade assintótica e a convergência do erro da característica da imagem, mesmo que o ângulo de desalinhamento, em torno do eixo z, entre os sistemas de coordenadas da câmera e do efetuador seja incerto. In this work, we present different eye-in-hand visual servoing control schemes applied to a robotic harvesting task of soft fruits in the presence of parametric uncertainties in the system models. The first scheme combines position-based visual servoing (PBVS) and image-based visual servoing (IBVS) approaches in order to perform respectively an approach phase to the fruit and then a fine tuning of the end-effector to harvest. The second scheme uses a hybrid visual servoing (HVS) approach to fulfill the complete harvesting task, by designing a suitable control law which combines error vectors defined in both the image and operational spaces. For detecting the fruits, an algorithm based on the combination of the OHTA color space and Otsu’s threshold method for a fast recognition of mature fruits in complex scenarios. In addition, a more accurate detection method employs a pre-trained deep encoder-decoder algorithm based on a minimized Segnet version for a fast and cheap inference during the task execution. The object localization is accomplished by employing an image triangulation technique, which combines the speeded-up-robust-features (SURF) and the-randomsample-consensus (RANSAC) or the Oriented FAST and Rotated BRIEF and the Brute-Force Matcher (BF-Matcher) algorithms to extract the fruit image feature and match it to its correspondent feature-point into the other view of the stereo camera. However, since these algorithms are computationally expensive for the task requirements, a faster estimation method uses the fruit centroid and a homogeneous transformation for discovering matching points. Finally, a vision-based sliding-mode-control scheme and a switching monitoring function are employed to cope with uncertainties in the calibration parameters of the camera-robot system. In this context, it is possible to guarantee the asymptotic stability and convergence of the image feature error, even if the misalignment angle, around the z-axis, between the camera and end-effector frames is uncertain. 3D computer simulations and preliminary experimental results, obtained with a Mitsubishi robot arm RV-2AJ carrying out a simple strawberry picking task, are included to illustrate the performance and effectiveness of the proposed control scheme. 2018-09-06 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36539@1 http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36539@2 eng info:eu-repo/semantics/openAccess PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO PPG EM ENGENHARIA ELÉTRICA PUC-Rio BR reponame:Repositório Institucional da PUC_RIO instname:Pontifícia Universidade Católica do Rio de Janeiro instacron:PUC_RIO