FORECASTING INDUSTRIAL PRODUCTION IN BRAZIL USING MANY PREDICTORS

Nesse artigo, utilizamos o índice de produção industrial brasileira para comparar a capacidade preditiva de regressões irrestritas e regressões sujeitas a penalidades usando muitos preditores. Focamos no least absolute shrinkage and selection operator (LASSO) e suas extensões. Propomos também uma co...

Full description

Bibliographic Details
Main Author: LEONARDO DE PAOLI CARDOSO DE CASTRO
Other Authors: MARCELO CUNHA MEDEIROS
Language:English
Published: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 2016
Online Access:http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=28515@1
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=28515@2
Description
Summary:Nesse artigo, utilizamos o índice de produção industrial brasileira para comparar a capacidade preditiva de regressões irrestritas e regressões sujeitas a penalidades usando muitos preditores. Focamos no least absolute shrinkage and selection operator (LASSO) e suas extensões. Propomos também uma combinação entre métodos de encolhimento e um algorítmo de seleção de variáveis (PVSA). A performance desses métodos foi comparada com a de um modelo de fatores. Nosso estudo apresenta três principais resultados. Em primeiro lugar, os modelos baseados no LASSO apresentaram performance superior a do modelo usado como benchmark em projeções de curto prazo. Segundo, o PSVA teve desempenho superior ao benchmark independente do horizonte de projeção. Finalmente, as variáveis com a maior capacidade preditiva foram consistentemente selecionadas pelos métodos considerados. Como esperado, essas variáveis são intimamente relacionadas à atividade industrial brasileira. Exemplos incluem a produção de veículos e a expedição de papelão. === In this article we compared the forecasting accuracy of unrestricted and penalized regressions using many predictors for the Brazilian industrial production index. We focused on the least absolute shrinkage and selection operator (Lasso) and its extensions. We also proposed a combination between penalized regressions and a variable search algorithm (PVSA). Factor-based models were used as our benchmark specification. Our study produced three main findings. First, Lasso-based models over-performed the benchmark in short-term forecasts. Second, the PSVA over-performed the proposed benchmark, regardless of the horizon. Finally, the best predictive variables are consistently chosen by all methods considered. As expected, these variables are closely related to Brazilian industrial activity. Examples include vehicle production and cardboard production.