STOCHASTIC REPRESENTATION FOR SOLUTIONS OF THE DIRICHLET PROBLEM FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO === COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR === FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO === PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO === BOLSA NOTA 10 === Como motivação, apresentaremos alguns pro...

Full description

Bibliographic Details
Main Author: CLAUSON CARVALHO DA SILVA
Other Authors: CARLOS TOMEI
Language:Portuguese
Published: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 2016
Online Access:http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=27261@1
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=27261@2
Description
Summary:PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO === COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR === FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO === PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO === BOLSA NOTA 10 === Como motivação, apresentaremos alguns problemas que ilustram a conexão entre a teoria da probabilidade e algumas equações diferenciais parciais. Suas soluções mesclam os dois assuntos e provocam a suspeita de que alguns processos estocásticos e operadores diferenciais caminham juntos. Em seguida, exibiremos a teoria das difusões de Itô. Mostraremos algumas de suas características, como a propriedade de Markov e cada um destes processos possuirá o que chamaremos de gerador infinitesimal da difusão. Este será um operador diferencial de segunda ordem cujo estudo detalhado revela características do processo. Apresentaremos também a fórmula de Dynkin. Com essas ferramentas probabilísticas, encontraremos uma representação estocástica para a solução do problema de Dirichlet para operadores diferenciais elípticos, generalizando as soluções dos problemas inicialmente propostos. === Firstly, for motivation purposes, we briefly present a few problems mixing notions of probability theory and of partial differential equations (PDE). In discussing the solution to such problems it will become apparent that some stochastic process and differential equations walk together. Next, we introduce a class of stochastic processes called the Ito diffusions, and some of its features such as the Markov property. Each such process has an associated linear operator the, so called, infinitesimal generator. This operator acts as a second-order differential operator on smooth functions, and controls the LOCAL behavior of these diffusions. We discuss these features together with Dynkin s formula a convenient relation derived from the infinitesimal generator, which informs us about the AVERAGE behavior of the diffusion. Finally, we apply these probabilistic tools to find a formula for the solution of the Dirichlet problem for a somewhat general linear elliptic second order PDE. This formula connects the solution of the PDE to the aggregated/average behavior and associated (Ito) diffusion. This type of stochastic representation generalizes the solution method of the problems firstly discussed.