AN ANALYSIS OF LITHOLOGY CLASSIFICATION USING SVM, MLP AND ENSEMBLE METHODS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO === COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR === PROGRAMA DE EXCELENCIA ACADEMICA === A classificação de litologias e uma tarefa importante na caracterização de reservatorios de petróleo. Um de seus principais objetivos e dar sup...

Full description

Bibliographic Details
Main Author: VANESSA RODRIGUES COELHO LEITE
Other Authors: MARCELO GATTASS
Language:Portuguese
Published: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 2012
Online Access:http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=21205@1
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=21205@2
Description
Summary:PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO === COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR === PROGRAMA DE EXCELENCIA ACADEMICA === A classificação de litologias e uma tarefa importante na caracterização de reservatorios de petróleo. Um de seus principais objetivos e dar suporte ao planejamento e as atividades de perfuracao de poços. Dessa forma, quanto mais rapidos e eficazes sejam os algoritmos de classificacao, mais confiavel ser a as decisoes tomadas pelos geologos e geofısicos. Esta dissertação analisa os metodos ensemble aplicados a classificacao automática de litologias. Para isso, foi realizada uma comparação entre classificadores individuais (Support Vector Machine e Multilayer Perceptron) e estes mesmos classificadores com métodos Ensemble (Bagging e Adaboost). Assim, concluımos com uma avaliação comparativa entre as técnicas, bem como apresentamos o trade-off em utilizar métodos Ensemble em substituição aos classificadores individuais. === Lithology classification is an important task in oil reservoir characterization, one of its major purposes is to support well planning and drilling activities. Therefore, faster and more effective classification algorithms will increase the speed and reliability of decisions made by geologists and geophysicists. This work analises ensemble methods applied to automatic lithology classification. For this, we performed a comparison between single classifiers (Support Vector Machine and Multilayer Perceptron) and these classifiers with ensemble methods (Bagging and Boost). Thus, we conclude with a comparative evaluation of techniques and present the trade-off in using Ensemble methods to replace single classifiers.