NUMERICAL SOLUTIONS FOR EIGENPROBLEMS ASSOCIATED TO SYMMETRIC OPERATORS

Desenvolve-se uma técnica para a extração de auto-pares relacionados com a solução de problemas de Elementos Finitos. O algoritmo consiste no uso dos métodos da Iteração Inversa e Gradiente Conjugado para a obtenção do vetor solução associado ao menor auto-valor. As soluções do auto-sistema são calc...

Full description

Bibliographic Details
Main Author: PAULO ROBERTO GARDEL KURKA
Other Authors: CARLOS ALBERTO DE ALMEIDA
Language:Portuguese
Published: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 1985
Online Access:http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=20274@1
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=20274@2
Description
Summary:Desenvolve-se uma técnica para a extração de auto-pares relacionados com a solução de problemas de Elementos Finitos. O algoritmo consiste no uso dos métodos da Iteração Inversa e Gradiente Conjugado para a obtenção do vetor solução associado ao menor auto-valor. As soluções do auto-sistema são calculadas sequencialmente pela modificação da matriz dos coeficientes das equações de equilíbrio do problema através do uso de uma técnica de Deflação. O uso extensivo desta técnica introduz auto-valores múltiplos na matriz dos coeficientes, tornando necessário proceder-se a uma combinação dos dois métodos. É efetuado também um estudo para encontrar vetores iniciais apropriados a serem utilizados pelos métodos. O algoritmo foi implementado e alguns resultados de resolução de exemplos são apresentados, para ilustrar o seu desempenho. === A vector iterative technique is developed for the extraction of eigenpairs related to the solution of finite element problems. The algorithm consists of using inverse iteration and conjugate gradient methods so as to obtain the solution vector associated to the smallest eigenvalue. Eigensolutions are sequentially calculated by replacing the coefficient matrix in the problem equilibrium equation using a deflation technique. The extensive usage of this technique, introduces multiple eigenvalue in the coefficient matrix, requiring a procedure to combine both methods. Also, a study is performed to find the appropriate starting vector to be used with methods. The algorithm has been implemented and the results of some example solutions are given that yield insight into its predictive capabilities.