SIMULATION OF A TURBULENT FLOW IN A SQUARE CROSS-SECTION, USING THE REYNOLDS STRESS MODEL

O modelo de duas equações K-E, largamente empregado na análise de escoamentos turbulentos, não é capaz de adequedamente modelar problemas que envolvam escoamentos secundários e com rotação em dutos, descolamento de camada-limite e outras situações em que a anisotropia inerente ao escoamento turbulen...

Full description

Bibliographic Details
Main Author: VICTOR KAMINSKI MARTINS
Other Authors: ANGELA OURIVIO NIECKELE
Language:Portuguese
Published: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 1994
Online Access:http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=18650@1
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=18650@2
Description
Summary:O modelo de duas equações K-E, largamente empregado na análise de escoamentos turbulentos, não é capaz de adequedamente modelar problemas que envolvam escoamentos secundários e com rotação em dutos, descolamento de camada-limite e outras situações em que a anisotropia inerente ao escoamento turbulento necessite ser levada em conta. Modelos mais complexos, que consideram esta anisotropia - os chamados modelos de tensões de Reynolds - são utilizados no intuito de produzir resultados numéricos mais próximos daqueles obtidos experimentalmente. O problema geometricamente simples, o escoamento turbulento hidrodinamicamente desenvolvido em um duto de seção quadrática, no qual a ocorrência de escoamentos secundários foi constatada experimentalmente e documentada por diversos autores, foi modelado e resolvido através do Método dos Volumes Finitos. Inicialmente, o modelo k-e foi emplementado, mostrando-se incapaz de prever, devido a sua natureza isotrópica, o escoamento secundário numa seção transversal de duto. Em seguida, o modelo de tensões de Reynolds foi implementado. A validação deste modelo é obtida comparando-se os resultados numéricos obtidos a resultados experimentais e numéricos encontrados bibliografia. === The two-equation k-e model, widely employed in the analysis of turbulent flows, is not capable of adequately modelling problems involving secondary and swirling flows in ducts, boudary-layer detachment and other situations in which the inherent anisotropy of turbulent flows must be taken into account. More complex models, that take this anisotropy into account - the so-called Reynolds-stress models - are employed with the purpose of producing numerical results closer to those obtained experimentally. A geometrically simple problem, the turbulent flow in a duct with a square cross-section, in which the presence of secondary flows was observed experimentally and documentd by several authors, was modelletd and resolved using the Finite Volume Method. Initially, the k-e model was implemtend, being proven not capable of predicting, due to its isotropic nature, the secondary flows in a duct cross-section. The Reynolds-stress model was then implemented. The validation of this model is obtained through comparison of the numerical resuls to experimental and numerical results found in the bibliography.