NUMERICAL SOLUTION OF COMPRESSIBLE AND INCOMPRESSIBLE FLOW IN IRREGULAR GEOMETRIES

CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO === Este trabalho propõe um método numérico de solução de escoamentos de fluidos compressíveis e incompressíveis a qualquer número de Mach em geometrias irregulares. Um sistema bidimensional de coordenadas curvilíneas não-ortogonais,coinc...

Full description

Bibliographic Details
Main Author: ERNESTO RIBEIRO RONZANI
Other Authors: ANGELA OURIVIO NIECKELE
Language:Portuguese
Published: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 1996
Online Access:http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=18648@1
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=18648@2
Description
Summary:CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO === Este trabalho propõe um método numérico de solução de escoamentos de fluidos compressíveis e incompressíveis a qualquer número de Mach em geometrias irregulares. Um sistema bidimensional de coordenadas curvilíneas não-ortogonais,coincidentes com os contornos físicos é utilizado. Os componentes cartesianos de velocidade são usados nas equações da quantidade de movimento e os covariantes na equação da continuidade. Seleciona-se a técnica de volumes finitos para discretizar as equações de conservação relacionadas aos princípios físicos, em regime permanente devido esta preservar a propriedade conservativa das equações e a sua con sistência física no processo numérico. Adota-se a configuração de malha co-localizada, avaliando-se todas as variáveis dependentes nos pontos centrais dos volumes são avaliados com esquemas Power-Law e Quick. Especial atenção é dada ao tratamento numérico das condições de contorno. O problema do acoplamento massa específica-pressão-velocidade é solucionado usando-se uma combinação das equações da continuidade, de quantidade de movimento linear e de uma equação de estado, gerando duas equações de correção da pressão. A primeira corrige a massa específica e a pressão, a segunda, o fluxo de massa e a velocidade. Propõe-se uma modificação da equação da correção da velocidade usando um termo de compensação do erro obtido na sua avaliação a fim de acelerar a convergência. Utilizam-se vários tipos de interpolação da massa específica na face, para minimizar as atenuações das variáveis, causadas pela falsa difusão. Para a solução das equações algébricas resultantes usa-se o algoritmo TDMA linha por linha e um processo de correção por blocos para acelerar a convergência. O método proposto é verificado em seis problemas testes, através da comparação com os resultados analíticos e numéricos disponíveis na literatura. === The present work consists in the development of a numerical method of solution of compressible and incompressible fluid flow for all speed in iregular geometries. A boundary-fitted two-dimensional nonorthogonal curvilinear coordinate systeam is utilized. The cartesian velocity components are the dependent variables in the momentum equations and covariant velocity components are used in the continuity equation. The finite-volume technique was selected to discretuze the steady-state physical phenomenon conservation equations, since this method keeps the conservative property of the equations and its physical consistency in the numerical process. A nonstaggered grid was employed, and all dependent variables are evaluated at the cell center points, which divides the physical domain. The convection-diffusion fluxes at the control volumes faces are evaluated with the Power Law and Quick shemes. Special attention is paid to the numerical treatment of boundary conditions. The problem of velocity-pressure-density coupling is solved using a combination of continuity, momentum equations and state equation resulting in two pressure correction equations. The first equation corrects the density and the pressure, the second equation corrects the mass flux and the velocity. A modification in the velocity correction equations is proposed using a compensationterm to accelerate the convergence. Several types of interpolation of the face density are used to reduce variable atenuations, caused by false diffusion. For the solution of the resulting algebric equations,the line-by-line TDMA algorith is used as well as a block-correction method to accelerate the convergence. The proposed method is verified on six test problems,by comparing the present results with analytical and numerical results avaiable in the literature.