IDENTIFICATION, FILTERING AND FORECASTING OF ARMA/TF AND STATE MODELS
Um método satisfatório para a caracterização de problemas não determinísticos é a identificação de modelos dinâmicos representativos destes problemas. Faz-se inicialmente uma análise comparativa quanto ao domínio, equivalência e adequação de modelos de parâmetro discreto da classe ARMA, de função de...
Main Author: | |
---|---|
Other Authors: | |
Language: | Portuguese |
Published: |
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
1977
|
Online Access: | http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=14418@1 http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=14418@2 |
id |
ndltd-IBICT-oai-MAXWELL.puc-rio.br-14418 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-IBICT-oai-MAXWELL.puc-rio.br-144182019-03-01T15:38:36Z IDENTIFICATION, FILTERING AND FORECASTING OF ARMA/TF AND STATE MODELS IDENTIFICAÇÃO, FILTRAGEM E PREDIÇÃO PARA MODELOS ARMA/FT E DE ESTADO JACK BACZYNSKI JOSE PAULO DE ALMEIDA E ALBUQUERQUE CARLOS KUBRUSLY JOSE PAULO DE ALMEIDA E ALBUQUERQUE JEAN PAUL GRAVIER ROBERTO PEREIRA D ARAUJO Um método satisfatório para a caracterização de problemas não determinísticos é a identificação de modelos dinâmicos representativos destes problemas. Faz-se inicialmente uma análise comparativa quanto ao domínio, equivalência e adequação de modelos de parâmetro discreto da classe ARMA, de função de Transferência (FT) e de estado, não necessariamente escalares ou invariantes. A seguir, examinam-se aspectos dos procedimentos usuais de identificação destes modelos. O problema de estimação de processos, abordado através do processo de inovações, objetiva um desenvolvimento gradual dos conceitos, no que se refere à determinação da estrutura do modelo. Seguem-se comparações entre algorítmos recursivos de estimação (Kalman e outros), abordando-se o problema da propriedade finitamente recursiva e de convergência. Em geral, as técnicas de identificação conduzem a mais de um modelo passível de ser utilizado na caracterização do processo. O problema de se escolher entre estes modelos é formulado como um problema de teste de hipóteses, ao qual se aplica a técnica de Máxima Verossimilhança, indistintamente para modelos ARMA, FT e de estado. A resolução do teste é imediata a partir do processo de inovações, tendo-se, no caso de modelos ARMA/FT, algumas alternativas bastante simplificadas. A aplicação do teste de hipóteses, no caso não-Gaussiana, é também enfocada. Non-deterministic problems can be adequately characterized by identifying dynamic models that can represent them. Early in the study, a comparative analysis of the range, equivalence and adequacy of the models is initially performed. Types of models considered in this work are ARMA, transfer function and State models of discrete parameter, not necessarilly scalar or invariant. The usual identification methods are then succinttly examined and compared. The estimation problem of stochastic processes, using the innovation processes, using the innovation process approach, is also analyzed, with a view to a gradual development of concepts as regards the determination of the model structure. Recursive estimation algorithms (Kalman and others) are then compared, and the problem of finitely recursive properties and convergence is examined. Identification thecniques usually leod to more than one model capable of characterizing the stochastic process. The problem of choosing between these models is formulated as a hypothesis testing problem, to which the Maximum Likelyhood thecnique is applied. Test resolution follows immediately from the innovation process, and can indistinctly be applied to ARMA, Transfer Function or state models. In the case of ARMA and Transfer Function models, an even more simplified result can be obtained. The application of hypothesis testing to the non-Gausian assumption is also brought to focus. 1977-03-28 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=14418@1 http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=14418@2 por info:eu-repo/semantics/openAccess PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO PPG EM ENGENHARIA ELÉTRICA PUC-Rio BR reponame:Repositório Institucional da PUC_RIO instname:Pontifícia Universidade Católica do Rio de Janeiro instacron:PUC_RIO |
collection |
NDLTD |
language |
Portuguese |
sources |
NDLTD |
description |
Um método satisfatório para a caracterização de problemas não determinísticos é a identificação de modelos dinâmicos representativos destes problemas. Faz-se inicialmente uma análise comparativa quanto ao domínio, equivalência e adequação de modelos de parâmetro discreto da classe ARMA, de função de Transferência (FT) e de estado, não necessariamente escalares ou invariantes. A seguir, examinam-se aspectos dos procedimentos usuais de identificação destes modelos. O problema de estimação de processos, abordado através do processo de inovações, objetiva um desenvolvimento gradual dos conceitos, no que se refere à determinação da estrutura do modelo. Seguem-se comparações entre algorítmos recursivos de estimação (Kalman e outros), abordando-se o problema da propriedade finitamente recursiva e de convergência.
Em geral, as técnicas de identificação conduzem a mais de um modelo passível de ser utilizado na caracterização do processo. O problema de se escolher entre estes modelos é formulado como um problema de teste de hipóteses, ao qual se aplica a técnica de Máxima Verossimilhança, indistintamente para modelos ARMA, FT e de estado. A resolução do teste é imediata a partir do processo de inovações, tendo-se, no caso de modelos ARMA/FT, algumas alternativas bastante simplificadas. A aplicação do teste de hipóteses, no caso não-Gaussiana, é também enfocada. === Non-deterministic problems can be adequately characterized by identifying dynamic models that can represent them. Early in the study, a comparative analysis of the range, equivalence and adequacy of the models is initially performed. Types of models considered in this work are ARMA, transfer function and State models of discrete parameter, not necessarilly scalar or invariant. The usual identification methods are then succinttly examined and compared. The estimation problem of stochastic processes, using the innovation processes, using the innovation process approach, is also analyzed, with a view to a gradual development of concepts as regards the determination of the model structure. Recursive estimation algorithms (Kalman and others) are then compared, and the problem of finitely recursive properties and convergence is examined.
Identification thecniques usually leod to more than one model capable of characterizing the stochastic process. The problem of choosing between these models is formulated as a hypothesis testing problem, to which the Maximum Likelyhood thecnique is applied. Test resolution follows immediately from the innovation process, and can indistinctly be applied to ARMA, Transfer Function or state models. In the case of ARMA and Transfer Function models, an even more simplified result can be obtained. The application of hypothesis testing to the non-Gausian assumption is also brought to focus.
|
author2 |
JOSE PAULO DE ALMEIDA E ALBUQUERQUE |
author_facet |
JOSE PAULO DE ALMEIDA E ALBUQUERQUE JACK BACZYNSKI |
author |
JACK BACZYNSKI |
spellingShingle |
JACK BACZYNSKI IDENTIFICATION, FILTERING AND FORECASTING OF ARMA/TF AND STATE MODELS |
author_sort |
JACK BACZYNSKI |
title |
IDENTIFICATION, FILTERING AND FORECASTING OF ARMA/TF AND STATE MODELS |
title_short |
IDENTIFICATION, FILTERING AND FORECASTING OF ARMA/TF AND STATE MODELS |
title_full |
IDENTIFICATION, FILTERING AND FORECASTING OF ARMA/TF AND STATE MODELS |
title_fullStr |
IDENTIFICATION, FILTERING AND FORECASTING OF ARMA/TF AND STATE MODELS |
title_full_unstemmed |
IDENTIFICATION, FILTERING AND FORECASTING OF ARMA/TF AND STATE MODELS |
title_sort |
identification, filtering and forecasting of arma/tf and state models |
publisher |
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO |
publishDate |
1977 |
url |
http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=14418@1 http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=14418@2 |
work_keys_str_mv |
AT jackbaczynski identificationfilteringandforecastingofarmatfandstatemodels AT jackbaczynski identificacaofiltragemepredicaoparamodelosarmaftedeestado |
_version_ |
1718987595580440576 |