Summary: | Orientador: Prof. Dr. João Paulo Gois === Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Ciências da computação, 2014. === O desenvolvimento tecnológico de dispositivos de captura 3D nos últimos anos permitiram
que os usuários acessassem dados 3D de forma fácil e com baixo custo. Neste trabalho estamos interessados no processamento de dados de câmeras que produzem seqüências de imagens (canais RGB) e as informações de profundidade dos objetos que compõem a cena (canal Z) simultaneamente. Atualmente o dispositivo mais popular para a produção deste tipo de informação é o Microsoft Kinect, originalmente usado para rastreamento de movimentos em aplicações de jogos.
A informação de profundidade, juntamente com as imagens permite a produção de muitos efeitos visuais de re-iluminação, abstração, segmentação de fundo, bem como a modelagem da geometria da cena. No entanto, o sensor de profundidade tende a gerar dados ruidosos, onde filtros multidimensionais para estabilizar os quadros de vídeo são necessários. Nesse sentido, este trabalho desenvolve e avalia um conjunto de ferramentas para o processamento de vídeos RGB-Z, desde filtros para estabilização de vídeos até efeitos gráficos (renderings não-fotorrealísticos). Para tal, um framework que captura e processa os dados RGB-Z interativamente foi proposto. A implementação deste framework explora programação em GPU com o OpenGL Shading Language (GLSL). === The technological development of 3D capture devices in recent years has enabled users to
easily access 3D data easily an in a low cost. In this work we are interested in processing data
from cameras that produce sequences of images (RGB-channels) and the depth information of objects that compose the scene (Z-channel) simultaneously. Currently the most popular device for producing this type of information is the Microsoft Kinect, originally used for tracking movements in game applications.
The depth information coupled with the images allow the production of many visual eects of relighting, abstraction, background segmentation as well as geometry modeling from the scene. However, the depth sensor tends to generate noisy data, where multidimensional filters to stabilize the frames of the video are required. In that sense this work developed and evaluated a set of tools for video processing in RGB-Z, from filters to video stabilization to the graphical eects (based on non-photorealistic rendering). To this aim, an interactive framework that captures and processes RGB-Z data interactively was presented. The implementation of this framework explores GPU programming with OpenGL Shading Language (GLSL).
|