Propriedades mecânicas e reológicas de nanocompósitos híbridos com matriz de epóxi

Orientador: Prof. Dr. Danilo Justino Carastan === Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, 2017. === Neste estudo foram avaliadas três técnicas de dispersão para o processamento de nanocompósitos de matriz de epóxi com nan...

Full description

Bibliographic Details
Main Author: Chiaretti, Daniel Victor Amaral
Other Authors: Carastan, Danilo Justino
Format: Others
Language:Portuguese
Published: 2017
Subjects:
Online Access:http://www.biblioteca.ufabc.edu.brhttp://biblioteca.ufabc.edu.br/index.php?codigo_sophia=108479
Description
Summary:Orientador: Prof. Dr. Danilo Justino Carastan === Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, 2017. === Neste estudo foram avaliadas três técnicas de dispersão para o processamento de nanocompósitos de matriz de epóxi com nanopartículas de diferentes geometrias: lamelares, fibrilares e esféricas. Para isso, foram preparados nanocompósitos com montmorilonita, laponita, nanotubos de haloisita, nanotubos de carbono e nanossílica por meio de mistura mecânica, sonicação e moagem de alta energia. A dispersão das nanopartículas na matriz foi avaliada por microscopia eletrônica de varredura, difração de raios X e espalhamento de raios x a baixo ângulo. Os resultados mostraram que o processo de sonicação foi o melhor para dispersar as nanopartículas em epóxi, sendo, portanto, utilizado para a fabricação de nanocompósitos híbridos com matriz de epóxi. Esses materiais apresentam duas fases sólidas nanométricas dispersas na matriz e, neste estudo, foram combinadas nanopartículas de diferentes geometrias, a fim de avaliar as propriedades mecânicas e reológicas dos híbridos e compará-las com as dos nanocompósitos com apenas uma nanopartícula (nanocompósitos convencionais). As propriedades mecânicas foram medidas por meio de ensaios de resistência à flexão, de resistência ao impacto (Izod) e análise dinâmico-mecânica. As propriedades reológicas foram medidas por meio de ensaios de cisalhamento oscilatório de pequenas amplitudes das dispersões não curadas. Com exceção da ductilidade, os nanocompósitos convencionais exibiram propriedades inferiores às da matriz. Já os nanocompósitos híbridos apresentaram propriedades mecânicas superiores às dos nanocompósitos convencionais, e em alguns casos, superiores às da matriz, indicando algum nível de efeito sinergético entre as nanopartículas. As propriedades reológicas das dispersões não curadas indicaram que algumas partículas apresentaram boa dispersão na matriz, antes do processo de cura. Contudo, tal característica não foi convertida em ganhos reais de propriedades mecânicas e os nanocompósitos correspondentes exibiram propriedades muito similares às das amostras supostamente mal dispersas. Esse foi um indicativo de que as propriedades finais dos nanocompósitos foram essencialmente determinadas pelos parâmetros envolvidos no processo de cura do material. === In this study, three dispersion techniques were evaluated for the processing of nanocomposites with epoxy matrix and nanoparticles with different geometries: lamellar, fibrillar and spherical. Therefore, nanocomposites with montmorillonite, laponite, halloysite nanotubes, carbon nanotubes and nanosilica were prepared via magnetic stirring, sonication and high energy milling. The dispersion of the nanoparticles in the epoxy matrix was evaluated using scanning electron microscopy, X-ray diffraction and small angle X-ray scattering. The results showed that sonication was the best method to disperse the nanoparticles in epoxy. Thus, it was used to manufacture hybrid nanocomposites with epoxy matrix. These materials have two different nanometric solid phases, dispersed in the matrix and, in this study, nanoparticles of different geometries were combined, aiming to evaluate the mechanical and rheological properties of the hybrids and compare them to those of the nanocomposites which have only one nanoparticle (conventional nanocomposites). The mechanical properties of the nanocomposites were evaluated through flexural testing, impact strength (Izod) and dynamic-mechanical analysis. The rheological properties were measured by small amplitude oscillatory shear tests of the uncured dispersions. Apart from ductility, the conventional nanocomposites showed inferior properties to those of the matrix. However, the hybrid nanocomposites exhibited superior properties to those of conventional nanocomposites and in some cases, even superior to those of the matrix, suggesting some level of synergistic effects between the nanoparticles. The rheological properties of the uncured dispersions indicated that some particles had good dispersion in the matrix, prior to the curing process. However, such feature was not converted into real gains on mechanical properties and the corresponding nanocomposites exhibited very similar properties to the supposedly poorly dispersed samples. This was an indicative that the final properties of nanocomposites were essentially determined by the parameters involved in the material curing process.