Medidas conformes -finitas e o teorema de Ruelle para extensões por grupos

Submitted by Mayara Nascimento (mayara.nascimento@ufba.br) on 2016-06-08T12:44:12Z No. of bitstreams: 1 dissertação_v4 - Sara Ruth.pdf: 864664 bytes, checksum: 9c2f39642abe743c08a9bef2a08b0a3d (MD5) === Approved for entry into archive by Alda Lima da Silva (sivalda@ufba.br) on 2016-06-13T17:33:25Z (...

Full description

Bibliographic Details
Main Author: Bispo, Sara Ruth Pires
Other Authors: Stadlbauer, Manuel
Language:Portuguese
Published: Instituto de Matemática. Departamento de Matemática 2016
Subjects:
Online Access:http://repositorio.ufba.br/ri/handle/ri/19475
Description
Summary:Submitted by Mayara Nascimento (mayara.nascimento@ufba.br) on 2016-06-08T12:44:12Z No. of bitstreams: 1 dissertação_v4 - Sara Ruth.pdf: 864664 bytes, checksum: 9c2f39642abe743c08a9bef2a08b0a3d (MD5) === Approved for entry into archive by Alda Lima da Silva (sivalda@ufba.br) on 2016-06-13T17:33:25Z (GMT) No. of bitstreams: 1 dissertação_v4 - Sara Ruth.pdf: 864664 bytes, checksum: 9c2f39642abe743c08a9bef2a08b0a3d (MD5) === Made available in DSpace on 2016-06-13T17:33:25Z (GMT). No. of bitstreams: 1 dissertação_v4 - Sara Ruth.pdf: 864664 bytes, checksum: 9c2f39642abe743c08a9bef2a08b0a3d (MD5) === Neste trabalho estudamos o teorema de Ruelle para extensões por grupos de uma cadeias de Markov topológicas, esse resultado foi obtido por Stadlbauer em 2013. A prova do resultado é baseado em uma construção de uma família de medidas equivalentes - finita conforme para uma dado potencial definido em uma extensão por grupo de uma cadeia de Markov topológica. Vimos que as derivadas de Radon-Nikodym associadas são autofunções para o operador de Ruelle e localmente log- Hölder. Além disso, a extensão por grupo não é ergódica com respeito as medidas acima na maioria dos casos.