The Atomic Structure of Ultrathin Germania Films

Die Herstellung von ultradünnen Germaniumdioxidfilmen auf Metallsubstraten ist erstmals erfolgreich gelungen. Die Filmstruktur konnte mittels oberflächensensitiven Techniken mit atomarer Präzision und chemischer Sensitivität aufgelöst werden. Zur Untersuchung werden STM-Bilder analysiert und durch n...

Full description

Bibliographic Details
Main Author: Lewandowski, Adrián Leandro
Other Authors: Freund, Hans-Joachim
Format: Doctoral Thesis
Language:English
Published: Humboldt-Universität zu Berlin 2019
Subjects:
RTM
STM
Online Access:http://edoc.hu-berlin.de/18452/21624
http://nbn-resolving.de/urn:nbn:de:kobv:11-110-18452/21624-4
http://dx.doi.org/10.18452/20874
id ndltd-HUMBOLT-oai-edoc.hu-berlin.de-18452-21624
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Germaniumdioxid
Siliziumdioxid
Ultradünne Filme
RTM
Glasstruktur
Germania
Silica
Ultrathin Films
STM
Glass structure
541 Physikalische Chemie
ddc:541
spellingShingle Germaniumdioxid
Siliziumdioxid
Ultradünne Filme
RTM
Glasstruktur
Germania
Silica
Ultrathin Films
STM
Glass structure
541 Physikalische Chemie
ddc:541
Lewandowski, Adrián Leandro
The Atomic Structure of Ultrathin Germania Films
description Die Herstellung von ultradünnen Germaniumdioxidfilmen auf Metallsubstraten ist erstmals erfolgreich gelungen. Die Filmstruktur konnte mittels oberflächensensitiven Techniken mit atomarer Präzision und chemischer Sensitivität aufgelöst werden. Zur Untersuchung werden STM-Bilder analysiert und durch niederenergetische Elektronenbeugung (LEED), eine dynamischen LEED-Studie und extern ausgeführte Dichtefunktionaltheorieberechnungen (DFT) ergänzt. In dieser Arbeit werden atomar aufgelöste Rastertunnelmikroskopiebilder (STM) von ultradünnen Germaniumdioxid- und Siliziumdioxidfilmen direkt verglichen. Ziel der Analyse ist es, den Einfluss des Metallsubstrats auf die Struktur von Oxidfilmen zu untersuchen. Zu diesem Zweck werden ultradünne Germaniumdioxid-Filme auf Ru(0001), Pt(111) und Au(111) abgeschieden und mit Siliziumdioxid-Filmen auf verschiedenen Substraten verglichen, die in früheren Studien untersucht wurden. Germaniumdioxid und Siliziumdioxid sind eng miteinader verknüpft. Hierbei sind Struktur und chemische Eigenschaften als äquivalent anzusehen. Es wurden drei verschiedene Netzwerkstrukturen aufgeklärt: Monolagen-, Zickzack- und Bilagenfilme. Die einzelnen Bausteine in diesen Filmsystemen bestehen aus verzerrten Tetraedern, in denen ein Germaniumatom von vier Sauerstoffatomen umgeben ist. Benachbarte Tetraeder sind durch Ge-O-Ge-Bindungen miteinander verknüpft und binden im Fall der Monolagenfilme an das darunterliegende Metallsubstrat. In Bilagenfilmen hingegen gibt es keine chemischen Bindungen zum Substrat, wodurch die Filmstruktur flexibler wird. Durch Variation der Herstellungsbedingungen kann man rein kristalline, amorphe oder Phasen mittlerer Ordnung erhalten. Es ist wichtig hervorzuheben, dass der amorphe Germaniumdioxid-Bilagenfilm ein neues amorphes zweidimensionales Material darstellt. === The preparation of metal-supported ultrathin films of germanium dioxide, termed also germania, has been successfully achieved for the first time. The structure of the films is elucidated with atomic precision and chemical sensitivity using surface science techniques. The investigation is performed by analyzing STM images and is complemented by low-energy electron diffraction (LEED) patterns, a dynamical LEED study, and external support from density functional theory (DFT) calculations. In this work, we compare side-by-side atomically-resolved scanning tunneling microscopy (STM) images of ultrathin films of germania and silica. The analysis aims to investigate the impact of the metal support on the structure of oxide films. For that purpose, ultrathin germania films are grown on Ru(0001), Pt(111) and Au(111), and compared with previously reported silica ultrathin films supported on different substrates. Germania has been widely associated with silica since they are considered to be structural and chemical equivalent materials. Three main network structures have been characterized: monolayer, zigzag and bilayer films. In all systems, the building block consists of a distorted tetrahedron with a germanium atom surrounded by four oxygen atoms. Adjacent tetrahedra connect to each other through Ge-O-Ge bonds and, in the case of the monolayer films, they also bind to the metal support. Conversely, in bilayer films there are no chemical bonds to the metal substrate, thus providing more flexibility to the film structure. Through a meticulous control of the preparation conditions one can obtain a purely crystalline phase, an amorphous one, or one with intermediate order. It is important to highlight that the amorphous germania bilayer film represents a new 2-dimensional amorphous material.
author2 Freund, Hans-Joachim
author_facet Freund, Hans-Joachim
Lewandowski, Adrián Leandro
author Lewandowski, Adrián Leandro
author_sort Lewandowski, Adrián Leandro
title The Atomic Structure of Ultrathin Germania Films
title_short The Atomic Structure of Ultrathin Germania Films
title_full The Atomic Structure of Ultrathin Germania Films
title_fullStr The Atomic Structure of Ultrathin Germania Films
title_full_unstemmed The Atomic Structure of Ultrathin Germania Films
title_sort atomic structure of ultrathin germania films
publisher Humboldt-Universität zu Berlin
publishDate 2019
url http://edoc.hu-berlin.de/18452/21624
http://nbn-resolving.de/urn:nbn:de:kobv:11-110-18452/21624-4
http://dx.doi.org/10.18452/20874
work_keys_str_mv AT lewandowskiadrianleandro theatomicstructureofultrathingermaniafilms
AT lewandowskiadrianleandro atomicstructureofultrathingermaniafilms
_version_ 1719303027096027136
spelling ndltd-HUMBOLT-oai-edoc.hu-berlin.de-18452-216242019-12-13T03:14:12Z The Atomic Structure of Ultrathin Germania Films Lewandowski, Adrián Leandro Freund, Hans-Joachim Rademann, Klaus Sterrer, Martin Germaniumdioxid Siliziumdioxid Ultradünne Filme RTM Glasstruktur Germania Silica Ultrathin Films STM Glass structure 541 Physikalische Chemie ddc:541 Die Herstellung von ultradünnen Germaniumdioxidfilmen auf Metallsubstraten ist erstmals erfolgreich gelungen. Die Filmstruktur konnte mittels oberflächensensitiven Techniken mit atomarer Präzision und chemischer Sensitivität aufgelöst werden. Zur Untersuchung werden STM-Bilder analysiert und durch niederenergetische Elektronenbeugung (LEED), eine dynamischen LEED-Studie und extern ausgeführte Dichtefunktionaltheorieberechnungen (DFT) ergänzt. In dieser Arbeit werden atomar aufgelöste Rastertunnelmikroskopiebilder (STM) von ultradünnen Germaniumdioxid- und Siliziumdioxidfilmen direkt verglichen. Ziel der Analyse ist es, den Einfluss des Metallsubstrats auf die Struktur von Oxidfilmen zu untersuchen. Zu diesem Zweck werden ultradünne Germaniumdioxid-Filme auf Ru(0001), Pt(111) und Au(111) abgeschieden und mit Siliziumdioxid-Filmen auf verschiedenen Substraten verglichen, die in früheren Studien untersucht wurden. Germaniumdioxid und Siliziumdioxid sind eng miteinader verknüpft. Hierbei sind Struktur und chemische Eigenschaften als äquivalent anzusehen. Es wurden drei verschiedene Netzwerkstrukturen aufgeklärt: Monolagen-, Zickzack- und Bilagenfilme. Die einzelnen Bausteine in diesen Filmsystemen bestehen aus verzerrten Tetraedern, in denen ein Germaniumatom von vier Sauerstoffatomen umgeben ist. Benachbarte Tetraeder sind durch Ge-O-Ge-Bindungen miteinander verknüpft und binden im Fall der Monolagenfilme an das darunterliegende Metallsubstrat. In Bilagenfilmen hingegen gibt es keine chemischen Bindungen zum Substrat, wodurch die Filmstruktur flexibler wird. Durch Variation der Herstellungsbedingungen kann man rein kristalline, amorphe oder Phasen mittlerer Ordnung erhalten. Es ist wichtig hervorzuheben, dass der amorphe Germaniumdioxid-Bilagenfilm ein neues amorphes zweidimensionales Material darstellt. The preparation of metal-supported ultrathin films of germanium dioxide, termed also germania, has been successfully achieved for the first time. The structure of the films is elucidated with atomic precision and chemical sensitivity using surface science techniques. The investigation is performed by analyzing STM images and is complemented by low-energy electron diffraction (LEED) patterns, a dynamical LEED study, and external support from density functional theory (DFT) calculations. In this work, we compare side-by-side atomically-resolved scanning tunneling microscopy (STM) images of ultrathin films of germania and silica. The analysis aims to investigate the impact of the metal support on the structure of oxide films. For that purpose, ultrathin germania films are grown on Ru(0001), Pt(111) and Au(111), and compared with previously reported silica ultrathin films supported on different substrates. Germania has been widely associated with silica since they are considered to be structural and chemical equivalent materials. Three main network structures have been characterized: monolayer, zigzag and bilayer films. In all systems, the building block consists of a distorted tetrahedron with a germanium atom surrounded by four oxygen atoms. Adjacent tetrahedra connect to each other through Ge-O-Ge bonds and, in the case of the monolayer films, they also bind to the metal support. Conversely, in bilayer films there are no chemical bonds to the metal substrate, thus providing more flexibility to the film structure. Through a meticulous control of the preparation conditions one can obtain a purely crystalline phase, an amorphous one, or one with intermediate order. It is important to highlight that the amorphous germania bilayer film represents a new 2-dimensional amorphous material. 2019-12-11 doctoralThesis doc-type:doctoralThesis http://edoc.hu-berlin.de/18452/21624 urn:nbn:de:kobv:11-110-18452/21624-4 http://dx.doi.org/10.18452/20874 eng (CC BY 3.0 DE) Namensnennung 3.0 Deutschland http://creativecommons.org/licenses/by/3.0/de/ application/pdf Humboldt-Universität zu Berlin