Adaptive finite element computation of eigenvalues
Gegenstand dieser Arbeit ist die numerische Approximation von Eigenwerten elliptischer Differentialoperatoren vermittels der adaptiven finite-Elemente-Methode (AFEM). Durch lokale Netzverfeinerung können derartige Verfahren den Rechenaufwand im Vergleich zu uniformer Verfeinerung deutlich reduziere...
Main Author: | Gallistl, Dietmar |
---|---|
Other Authors: | Carstensen, Carsten |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II
2014
|
Subjects: | |
Online Access: | http://edoc.hu-berlin.de/18452/17654 http://nbn-resolving.de/urn:nbn:de:kobv:11-100219372 http://dx.doi.org/10.18452/17002 |
Similar Items
-
On the numerical analysis of eigenvalue problems
by: Gedicke, Joscha Micha
Published: (2013) -
On the quasi-optimal convergence of adaptive nonconforming finite element methods in three examples
by: Rabus, Hella
Published: (2014) -
A class of mixed finite element methods based on the Helmholtz decomposition in computational mechanics
by: Schedensack, Mira
Published: (2015) -
Adaptive finite elements for a contact problem in elastoplasticity with Lagrange techniques
by: Wiedemann, Sebastian
Published: (2013) -
Aspects of guaranteed error control in computations for partial differential equations
by: Merdon, Christian
Published: (2013)