Novel nanoscopic FeF 3 –based materials

Das Hauptaugenmerk dieser Arbeit liegt auf einer Pilotstudie zur Darstellung von Eisen(III)fluorid (FeF3) unter Verwendung von Sol-Gel-Syntheserouten. Eine modifizierte fluorolytische Sol-Gel-Synthese wurde entwickelt um bi-acide auf FeF3 basierende Materialien zu erhalten. Die Synthese erzeugt Hydr...

Full description

Bibliographic Details
Main Author: Guo, Ying
Other Authors: Kemnitz, Erhard
Format: Doctoral Thesis
Language:English
Published: Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I 2013
Subjects:
Online Access:http://edoc.hu-berlin.de/18452/17439
http://nbn-resolving.de/urn:nbn:de:kobv:11-100211464
http://dx.doi.org/10.18452/16787
id ndltd-HUMBOLT-oai-edoc.hu-berlin.de-18452-17439
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic heterogene Katalyse
Bi-Azidität
Eisenfluorid
Nanomaterial
Sol-Gel-Synthese
heterogeneous catalysis
bi-acidity
iron fluoride
nanomaterial
sol-gel process
540 Chemie
30 Chemie
VE 7047
VH 8010
VH 9707
ddc:540
spellingShingle heterogene Katalyse
Bi-Azidität
Eisenfluorid
Nanomaterial
Sol-Gel-Synthese
heterogeneous catalysis
bi-acidity
iron fluoride
nanomaterial
sol-gel process
540 Chemie
30 Chemie
VE 7047
VH 8010
VH 9707
ddc:540
Guo, Ying
Novel nanoscopic FeF 3 –based materials
description Das Hauptaugenmerk dieser Arbeit liegt auf einer Pilotstudie zur Darstellung von Eisen(III)fluorid (FeF3) unter Verwendung von Sol-Gel-Syntheserouten. Eine modifizierte fluorolytische Sol-Gel-Synthese wurde entwickelt um bi-acide auf FeF3 basierende Materialien zu erhalten. Die Synthese erzeugt Hydroxygruppen, die potentiellen Brønsted-sauren Zentren, auf der Oberfläche der klassischen Lewissäure FeF3. Im Anschluss wurde Magnesiumfluorid (MgF2) als Matrix eingesetzt. Verglichen mit FeF3 zeigen ternäre FeF3-MgF2 bemerkenswert hohe Oberflächen und verbesserte Porosität. Das Wichtigste jedoch ist, das hauptsächlich starke Lewis- und mittelstarke Brønsted-saure Zentren auf der FeF3-MgF2 vorhanden sind. Des Weiteren wurden, unter Verwendung anderer Erdalkalimetallfluoride (CaF2 oder SrF2) und Zinkfluorid (ZnF2) als Matrix, Serien ternärer Fluoridmaterialien synthetisiert und systematisch untersucht. Durch Charakterisierung der FeF3-MF2-Oberflächen konnten systematische Veränderungen hinsichtlich Größe der Oberfläche, Porosität und Azidität festgestellt werden. Mit abnehmender Atomnummer (von Sr zu Mg) erhöht sich die Stärke der sauren Zentren, während die mittlere Porengröße dramatisch abnimmt. Darüber hinaus führt ein größeres M-zu-Fe-Verhältnis generell zu kleineren Porengrößen und höheren Oberflächen. Diese Ergebnisse implizieren, dass die Eigenschaften ternärer FeF3-MF2 durch Veränderung der MF2-Matrix oder des M-zu-Fe-Verhältnisses einstellbar sind. Schlussendlich konnte anhand einer Modellreaktion, der Isomerisierung von Citronellal zu Isopulegolen, die katalytische Aktivität der bi-aziden Zentren der auf FeF3 basierenden Materialien nachgewiesen werden. Zusätzlich wurde in dieser Arbeit diskutiert wie Oberfläche, Porosität und Azidität gemeinsam die katalytische Aktivität von FeF3-MgF2 bestimmen. Diese Arbeit beweist damit die Realisierbarkeit der Synthese neuer nanoskopischer Metallfluoride mit gewünschten Oberflächeneigenschaften. === This work serves as a pilot study on the development of iron(III) fluoride (FeF3) based materials with surface bi-acidity. A modified fluorolytic sol-gel route was established to prepare the bi-acidic FeF3-based materials. The synthesis procedure introduced hydroxyls, the potential Brønsted acid sites, on the surface of a classic Lewis acid, FeF3. Subsequently, magnesium fluoride (MgF2) was used as matrix. Comparing with FeF3, the ternary FeF3-MgF2 showed remarkable high surface area and enhanced porosity. Most importantly, strong Lewis and medium strong Brønsted acid sites were found predominant on the FeF3-MgF2 surface. Next a series of ternary fluoride materials were synthesised and studied systematically, using other alkaline earth metal fluorides (CaF2 or SrF2) as well as zinc fluoride (ZnF2) as matrices. Surface characterisation of FeF3-MF2 revealed systematic changes in their surface area, porosity, and surface acidity. With decreasing atom numbers (from Sr to Mg), strengths of surface acidic sites and surface area increased, while the average pore size decreased drastically. Moreover, higher M-to-Fe ratio generally resulted in smaller pore size and larger surface area. These findings imply that the properties of ternary FeF3-MF2 are tunable by changing the MF2 matrix or the M-to-Fe ratio or both. Last but not least, in the model reaction, isomerisation of citronellal to isopulegols, FeF3-based materials were highly active due to their bi-acidity. Finally this work discussed how surface area, porosity, and surface acidity jointly determined the catalytic activity of FeF3-MF2. In conclusion, this work demonstrates the feasibility to synthesise novel nanoscopic metal fluorides with desirable surface properties.
author2 Kemnitz, Erhard
author_facet Kemnitz, Erhard
Guo, Ying
author Guo, Ying
author_sort Guo, Ying
title Novel nanoscopic FeF 3 –based materials
title_short Novel nanoscopic FeF 3 –based materials
title_full Novel nanoscopic FeF 3 –based materials
title_fullStr Novel nanoscopic FeF 3 –based materials
title_full_unstemmed Novel nanoscopic FeF 3 –based materials
title_sort novel nanoscopic fef 3 –based materials
publisher Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I
publishDate 2013
url http://edoc.hu-berlin.de/18452/17439
http://nbn-resolving.de/urn:nbn:de:kobv:11-100211464
http://dx.doi.org/10.18452/16787
work_keys_str_mv AT guoying novelnanoscopicfef3basedmaterials
_version_ 1719198096320102400
spelling ndltd-HUMBOLT-oai-edoc.hu-berlin.de-18452-174392019-06-03T15:09:19Z Novel nanoscopic FeF 3 –based materials Guo, Ying Kemnitz, Erhard Pinna, Nicola heterogene Katalyse Bi-Azidität Eisenfluorid Nanomaterial Sol-Gel-Synthese heterogeneous catalysis bi-acidity iron fluoride nanomaterial sol-gel process 540 Chemie 30 Chemie VE 7047 VH 8010 VH 9707 ddc:540 Das Hauptaugenmerk dieser Arbeit liegt auf einer Pilotstudie zur Darstellung von Eisen(III)fluorid (FeF3) unter Verwendung von Sol-Gel-Syntheserouten. Eine modifizierte fluorolytische Sol-Gel-Synthese wurde entwickelt um bi-acide auf FeF3 basierende Materialien zu erhalten. Die Synthese erzeugt Hydroxygruppen, die potentiellen Brønsted-sauren Zentren, auf der Oberfläche der klassischen Lewissäure FeF3. Im Anschluss wurde Magnesiumfluorid (MgF2) als Matrix eingesetzt. Verglichen mit FeF3 zeigen ternäre FeF3-MgF2 bemerkenswert hohe Oberflächen und verbesserte Porosität. Das Wichtigste jedoch ist, das hauptsächlich starke Lewis- und mittelstarke Brønsted-saure Zentren auf der FeF3-MgF2 vorhanden sind. Des Weiteren wurden, unter Verwendung anderer Erdalkalimetallfluoride (CaF2 oder SrF2) und Zinkfluorid (ZnF2) als Matrix, Serien ternärer Fluoridmaterialien synthetisiert und systematisch untersucht. Durch Charakterisierung der FeF3-MF2-Oberflächen konnten systematische Veränderungen hinsichtlich Größe der Oberfläche, Porosität und Azidität festgestellt werden. Mit abnehmender Atomnummer (von Sr zu Mg) erhöht sich die Stärke der sauren Zentren, während die mittlere Porengröße dramatisch abnimmt. Darüber hinaus führt ein größeres M-zu-Fe-Verhältnis generell zu kleineren Porengrößen und höheren Oberflächen. Diese Ergebnisse implizieren, dass die Eigenschaften ternärer FeF3-MF2 durch Veränderung der MF2-Matrix oder des M-zu-Fe-Verhältnisses einstellbar sind. Schlussendlich konnte anhand einer Modellreaktion, der Isomerisierung von Citronellal zu Isopulegolen, die katalytische Aktivität der bi-aziden Zentren der auf FeF3 basierenden Materialien nachgewiesen werden. Zusätzlich wurde in dieser Arbeit diskutiert wie Oberfläche, Porosität und Azidität gemeinsam die katalytische Aktivität von FeF3-MgF2 bestimmen. Diese Arbeit beweist damit die Realisierbarkeit der Synthese neuer nanoskopischer Metallfluoride mit gewünschten Oberflächeneigenschaften. This work serves as a pilot study on the development of iron(III) fluoride (FeF3) based materials with surface bi-acidity. A modified fluorolytic sol-gel route was established to prepare the bi-acidic FeF3-based materials. The synthesis procedure introduced hydroxyls, the potential Brønsted acid sites, on the surface of a classic Lewis acid, FeF3. Subsequently, magnesium fluoride (MgF2) was used as matrix. Comparing with FeF3, the ternary FeF3-MgF2 showed remarkable high surface area and enhanced porosity. Most importantly, strong Lewis and medium strong Brønsted acid sites were found predominant on the FeF3-MgF2 surface. Next a series of ternary fluoride materials were synthesised and studied systematically, using other alkaline earth metal fluorides (CaF2 or SrF2) as well as zinc fluoride (ZnF2) as matrices. Surface characterisation of FeF3-MF2 revealed systematic changes in their surface area, porosity, and surface acidity. With decreasing atom numbers (from Sr to Mg), strengths of surface acidic sites and surface area increased, while the average pore size decreased drastically. Moreover, higher M-to-Fe ratio generally resulted in smaller pore size and larger surface area. These findings imply that the properties of ternary FeF3-MF2 are tunable by changing the MF2 matrix or the M-to-Fe ratio or both. Last but not least, in the model reaction, isomerisation of citronellal to isopulegols, FeF3-based materials were highly active due to their bi-acidity. Finally this work discussed how surface area, porosity, and surface acidity jointly determined the catalytic activity of FeF3-MF2. In conclusion, this work demonstrates the feasibility to synthesise novel nanoscopic metal fluorides with desirable surface properties. 2013-07-25 doctoralThesis doc-type:doctoralThesis http://edoc.hu-berlin.de/18452/17439 urn:nbn:de:kobv:11-100211464 http://dx.doi.org/10.18452/16787 BV041238667 eng Namensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen http://creativecommons.org/licenses/by-nc-sa/3.0/de/ application/pdf Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I