Global aspects of holonomy in pseudo-Riemannian geometry
In dieser Arbeit untersuchen wir die Interaktion von Holonomie und der globalen Geometrie von Lorentzmannigfaltigkeiten und pseudo-Riemannschen Untermannigfaltigkeiten in Räumen konstanter Krümmung. Insbesondere konstruieren wir schwach irreduzible, reduzible Lorentzmetriken auf den Totalräumen von...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II
2011
|
Subjects: | |
Online Access: | http://edoc.hu-berlin.de/18452/17015 http://nbn-resolving.de/urn:nbn:de:kobv:11-100192368 http://dx.doi.org/10.18452/16363 |
Summary: | In dieser Arbeit untersuchen wir die Interaktion von Holonomie und der globalen Geometrie von Lorentzmannigfaltigkeiten und pseudo-Riemannschen Untermannigfaltigkeiten in Räumen konstanter Krümmung. Insbesondere konstruieren wir schwach irreduzible, reduzible Lorentzmetriken auf den Totalräumen von gewissen Kreisbündeln, was zu einer Konstruktionsmethode von Lorentzmannigfaltigkeiten mit vorgegebener Holonomiedarstellung führt. Danach führen wir eine Bochnertechnik für die Lorentzmannigfaltigkeiten ein, die ein nirgends verschwindendes, paralleles, lichtartiges Vektorfeld zulassen, dessen orthogonale Distribution kompakte Blätter hat. Schließlich klassifizieren wir normale Holonomiedarstellungen von raumartigen Untermannigfaltigkeiten in Räumen konstanter Krümmung und verallgemeinern die Klassifikation eine größere Klasse von Untermannigfaltigkeiten. === In this thesis we study the interaction of holonomy and the global geometry of Lorentzian manifolds and pseudo-Riemannian submanifolds in spaces of constant curvature. In particular, we construct weakly irreducible, reducible Lorentzian metrics on the total spaces of certain circle bundles leading to a construction of Lorentzian manifolds with specified holonomy representations. Then we introduce a Bochner technique for Lorentzian manifolds admitting a nowhere vanishing parallel lightlike vector field whose orthogonal distribution has compact leaves. Finally, we classify normal holonomy representations of spacelike submanifolds in spaces of constant curvature and extend the classification to more general submanifolds. |
---|