The role of GEP on chemotherapy induced alterations in hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third leading cause of cancer related death worldwide. Chemo-therapy has been commonly used to treat unresectable HCC but with limited efficacy. Therefore, there is an urgent demand for the development of better therapeutic a...

Full description

Bibliographic Details
Main Authors: Wong, Chung-lim, 黃仲廉
Language:English
Published: The University of Hong Kong (Pokfulam, Hong Kong) 2014
Subjects:
Online Access:http://hdl.handle.net/10722/197132
id ndltd-HKU-oai-hub.hku.hk-10722-197132
record_format oai_dc
collection NDLTD
language English
sources NDLTD
topic Protein precursors
Liver - Cancer - Chemotherapy
Growth factors
spellingShingle Protein precursors
Liver - Cancer - Chemotherapy
Growth factors
Wong, Chung-lim
黃仲廉
The role of GEP on chemotherapy induced alterations in hepatocellular carcinoma
description Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third leading cause of cancer related death worldwide. Chemo-therapy has been commonly used to treat unresectable HCC but with limited efficacy. Therefore, there is an urgent demand for the development of better therapeutic approaches. Granulin-epithelin precursor (GEP) is a novel growth factor with over-expression in more than 70% of HCCs and has been demonstrated as potential therapeutic target. The aims of this study are to examine the role of GEP in chemo-resistance and the therapeutic potential of GEP antibody therapy in combination with chemo-therapy in HCC. The role of GEP in HCC chemo-resistance has been examined by HCC in vitro models in the first part of the study and by in vivo human HCC xenograft models in immunocompromised mice in the second part of the study. It was shown that the chemo-therapeutic agents selected HCC cells in vitro and in vivo resulted in increased cellular expression of GEP, ABCB5, hepatic cancer stem cell (CSC) marker CD133/EpCAM positive populations and demonstrated enhanced CSCs properties including colony formation ability and chemo-resistance. Over-expression and knockdown of GEP expressions respectively demonstrated that GEP levels were important in conferring resistance to the chemo-therapeutic agents and the drug-induced apoptosis. GEP antibody therapy not only sensitized the parental HCC populations but also the chemo-resistant subpopulations to chemo-therapy induced apoptosis. Importantly, combination of GEP antibody therapy with chemo-therapy inhibited the chemo-therapy induced GEP, ABCB5 and heaptic CSCs marker over-expression through neutralization of the secretary GEP levels in the culture supernatant, and the serum GEP levels in the HCC orthotopic mice model. In human HCC xenograft models, GEP antibody treatment alone is consistently able to inhibit the tumor growth, but is unable to eliminate the established intrahepatic tumor. Cisplatin treatment, low and high dose respectively, was only able to eradicate a fraction of the intrahepatic tumor and the residual tumors grew aggressively after chemo-drug withdrawal. Combination of GEP antibody with low dose of cisplatin resulted in significant proliferation inhibition and apoptosis induction respectively. Importantly, combination of GEP antibody with high dose of cisplatin resulted in eradication of all established intrahepatic tumor. In addition, chemo-therapy induced the Akt/PKB and MEK/ERK prosurvival pathways, disturbed the balanced between the ratio of pro-apoptotic (Bax) to anti-apoptotic (Bcl-2) member through the induction of Bcl-2. Nonetheless, combination GEP antibody therapy suppressed the chemo-therapy induced phosphorylation of PDK1, Akt, MEK, ERK, and Bcl-2 levels. It was shown that Wortmannin, the PI3K/Akt inhibitor, suppressed the expression of ABCB5 and Bcl-2 induced by chemo-therapy but showed no effect on GEP expression levels. In summary, the study demonstrated the chemo-therapy treatment alone induced the expression of growth factor GEP, drug transporter ABCB5, hepatic cancer stem cell markers expressions, and the residual cancer cells showed enhanced CSCs properties. Combination treatment with GEP antibody reversed the signaling and cancer stem cell properties induced by chemo-therapy alone. Therefore, further investigations of this combination treatment approach may lead to the development of novel therapeutic approach for the clinical treatment of chemo-resistant HCC. === published_or_final_version === Surgery === Doctoral === Doctor of Philosophy
author Wong, Chung-lim
黃仲廉
author_facet Wong, Chung-lim
黃仲廉
author_sort Wong, Chung-lim
title The role of GEP on chemotherapy induced alterations in hepatocellular carcinoma
title_short The role of GEP on chemotherapy induced alterations in hepatocellular carcinoma
title_full The role of GEP on chemotherapy induced alterations in hepatocellular carcinoma
title_fullStr The role of GEP on chemotherapy induced alterations in hepatocellular carcinoma
title_full_unstemmed The role of GEP on chemotherapy induced alterations in hepatocellular carcinoma
title_sort role of gep on chemotherapy induced alterations in hepatocellular carcinoma
publisher The University of Hong Kong (Pokfulam, Hong Kong)
publishDate 2014
url http://hdl.handle.net/10722/197132
work_keys_str_mv AT wongchunglim theroleofgeponchemotherapyinducedalterationsinhepatocellularcarcinoma
AT huángzhònglián theroleofgeponchemotherapyinducedalterationsinhepatocellularcarcinoma
AT wongchunglim roleofgeponchemotherapyinducedalterationsinhepatocellularcarcinoma
AT huángzhònglián roleofgeponchemotherapyinducedalterationsinhepatocellularcarcinoma
_version_ 1716814247647772672
spelling ndltd-HKU-oai-hub.hku.hk-10722-1971322015-07-29T04:02:34Z The role of GEP on chemotherapy induced alterations in hepatocellular carcinoma Wong, Chung-lim 黃仲廉 Protein precursors Liver - Cancer - Chemotherapy Growth factors Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third leading cause of cancer related death worldwide. Chemo-therapy has been commonly used to treat unresectable HCC but with limited efficacy. Therefore, there is an urgent demand for the development of better therapeutic approaches. Granulin-epithelin precursor (GEP) is a novel growth factor with over-expression in more than 70% of HCCs and has been demonstrated as potential therapeutic target. The aims of this study are to examine the role of GEP in chemo-resistance and the therapeutic potential of GEP antibody therapy in combination with chemo-therapy in HCC. The role of GEP in HCC chemo-resistance has been examined by HCC in vitro models in the first part of the study and by in vivo human HCC xenograft models in immunocompromised mice in the second part of the study. It was shown that the chemo-therapeutic agents selected HCC cells in vitro and in vivo resulted in increased cellular expression of GEP, ABCB5, hepatic cancer stem cell (CSC) marker CD133/EpCAM positive populations and demonstrated enhanced CSCs properties including colony formation ability and chemo-resistance. Over-expression and knockdown of GEP expressions respectively demonstrated that GEP levels were important in conferring resistance to the chemo-therapeutic agents and the drug-induced apoptosis. GEP antibody therapy not only sensitized the parental HCC populations but also the chemo-resistant subpopulations to chemo-therapy induced apoptosis. Importantly, combination of GEP antibody therapy with chemo-therapy inhibited the chemo-therapy induced GEP, ABCB5 and heaptic CSCs marker over-expression through neutralization of the secretary GEP levels in the culture supernatant, and the serum GEP levels in the HCC orthotopic mice model. In human HCC xenograft models, GEP antibody treatment alone is consistently able to inhibit the tumor growth, but is unable to eliminate the established intrahepatic tumor. Cisplatin treatment, low and high dose respectively, was only able to eradicate a fraction of the intrahepatic tumor and the residual tumors grew aggressively after chemo-drug withdrawal. Combination of GEP antibody with low dose of cisplatin resulted in significant proliferation inhibition and apoptosis induction respectively. Importantly, combination of GEP antibody with high dose of cisplatin resulted in eradication of all established intrahepatic tumor. In addition, chemo-therapy induced the Akt/PKB and MEK/ERK prosurvival pathways, disturbed the balanced between the ratio of pro-apoptotic (Bax) to anti-apoptotic (Bcl-2) member through the induction of Bcl-2. Nonetheless, combination GEP antibody therapy suppressed the chemo-therapy induced phosphorylation of PDK1, Akt, MEK, ERK, and Bcl-2 levels. It was shown that Wortmannin, the PI3K/Akt inhibitor, suppressed the expression of ABCB5 and Bcl-2 induced by chemo-therapy but showed no effect on GEP expression levels. In summary, the study demonstrated the chemo-therapy treatment alone induced the expression of growth factor GEP, drug transporter ABCB5, hepatic cancer stem cell markers expressions, and the residual cancer cells showed enhanced CSCs properties. Combination treatment with GEP antibody reversed the signaling and cancer stem cell properties induced by chemo-therapy alone. Therefore, further investigations of this combination treatment approach may lead to the development of novel therapeutic approach for the clinical treatment of chemo-resistant HCC. published_or_final_version Surgery Doctoral Doctor of Philosophy 2014-05-12T07:30:23Z 2014-05-12T07:30:23Z 2013 2013 PG_Thesis 10.5353/th_b5043417 b5043417 http://hdl.handle.net/10722/197132 eng HKU Theses Online (HKUTO) Creative Commons: Attribution 3.0 Hong Kong License The author retains all proprietary rights, (such as patent rights) and the right to use in future works. The University of Hong Kong (Pokfulam, Hong Kong)