Mean variance portfolio management : time consistent approach

In this thesis, two problems of time consistent mean-variance portfolio selection have been studied: mean-variance asset-liability management with regime switchings and mean-variance optimization with state-dependent risk aversion under short-selling prohibition. Due to the non-linear expectation...

Full description

Bibliographic Details
Main Authors: Wong, Kwok-chuen, 黃國全
Other Authors: Yung, SP
Language:English
Published: The University of Hong Kong (Pokfulam, Hong Kong) 2014
Subjects:
Online Access:http://hdl.handle.net/10722/196026
id ndltd-HKU-oai-hub.hku.hk-10722-196026
record_format oai_dc
spelling ndltd-HKU-oai-hub.hku.hk-10722-1960262015-07-29T04:02:29Z Mean variance portfolio management : time consistent approach Wong, Kwok-chuen 黃國全 Yung, SP Portfolio management - Mathematical models In this thesis, two problems of time consistent mean-variance portfolio selection have been studied: mean-variance asset-liability management with regime switchings and mean-variance optimization with state-dependent risk aversion under short-selling prohibition. Due to the non-linear expectation term in the mean-variance utility, the usual Tower Property fails to hold, and the corresponding optimal portfolio selection problem becomes time-inconsistent in the sense that it does not admit the Bellman Optimality Principle. Because of this, in this thesis, time-consistent equilibrium solution of two mean-variance optimization problems is established via a game theoretic approach. In the first part of this thesis, the time consistent solution of the mean-variance asset-liability management is sought for. By using the extended Hamilton-Jacobi- Bellman equation for equilibrium solution, equilibrium feedback control of this MVALM and the corresponding equilibrium value function can be obtained. The equilibrium control is found to be affine in liability. Hence, the time consistent equilibrium control of this problem is state dependent in the sense that it depends on the uncontrollable liability process, which is in substantial contrast with the time consistent solution of the simple classical mean-variance problem in Björk and Murgoci (2010), in which it was independent of the state. In the second part of this thesis, the time consistent equilibrium strategies for the mean-variance portfolio selection with state dependent risk aversion under short-selling prohibition is studied in both a discrete and a continuous time set- tings. The motivation that urges us to study this problem is the recent work in Björk et al. (2012) that considered the mean-variance problem with state dependent risk aversion in the sense that the risk aversion is inversely proportional to the current wealth. There is no short-selling restriction in their problem and the corresponding time consistent control was shown to be linear in wealth. However, we discovered that the counterpart of their continuous time equilibrium control in the discrete time framework behaves unsatisfactory, in the sense that the corresponding “optimal” wealth process can take negative values. This negativity in wealth will change the investor into a risk seeker which results in an unbounded value function that is economically unsound. Therefore, the discretized version of the problem in Bjork et al. (2012) might yield solutions with bankruptcy possibility. Furthermore, such “bankruptcy” solution can converge to the solution in continuous counterpart as Björk et al. (2012). This means that the negative risk aversion drawback could appear in implementing the solution in Björk et al. (2012) discretely in practice. This drawback urges us to prohibit short-selling in order to eliminate the chance of getting non-positive wealth. Using backward induction, the equilibrium control in discrete time setting is explicit solvable and is shown to be linear in wealth. An application of the extended Hamilton-Jacobi-Bellman equation leads us to conclude that the continuous time equilibrium control is also linear in wealth. Also, the investment to wealth ratio would satisfy an integral equation which is uniquely solvable. The discrete time equilibrium controls are shown to converge to that in continuous time setting. published_or_final_version Mathematics Master Master of Philosophy 2014-03-21T03:50:06Z 2014-03-21T03:50:06Z 2013 PG_Thesis 10.5353/th_b5153743 b5153743 http://hdl.handle.net/10722/196026 eng HKU Theses Online (HKUTO) Creative Commons: Attribution 3.0 Hong Kong License The author retains all proprietary rights, (such as patent rights) and the right to use in future works. The University of Hong Kong (Pokfulam, Hong Kong)
collection NDLTD
language English
sources NDLTD
topic Portfolio management - Mathematical models
spellingShingle Portfolio management - Mathematical models
Wong, Kwok-chuen
黃國全
Mean variance portfolio management : time consistent approach
description In this thesis, two problems of time consistent mean-variance portfolio selection have been studied: mean-variance asset-liability management with regime switchings and mean-variance optimization with state-dependent risk aversion under short-selling prohibition. Due to the non-linear expectation term in the mean-variance utility, the usual Tower Property fails to hold, and the corresponding optimal portfolio selection problem becomes time-inconsistent in the sense that it does not admit the Bellman Optimality Principle. Because of this, in this thesis, time-consistent equilibrium solution of two mean-variance optimization problems is established via a game theoretic approach. In the first part of this thesis, the time consistent solution of the mean-variance asset-liability management is sought for. By using the extended Hamilton-Jacobi- Bellman equation for equilibrium solution, equilibrium feedback control of this MVALM and the corresponding equilibrium value function can be obtained. The equilibrium control is found to be affine in liability. Hence, the time consistent equilibrium control of this problem is state dependent in the sense that it depends on the uncontrollable liability process, which is in substantial contrast with the time consistent solution of the simple classical mean-variance problem in Björk and Murgoci (2010), in which it was independent of the state. In the second part of this thesis, the time consistent equilibrium strategies for the mean-variance portfolio selection with state dependent risk aversion under short-selling prohibition is studied in both a discrete and a continuous time set- tings. The motivation that urges us to study this problem is the recent work in Björk et al. (2012) that considered the mean-variance problem with state dependent risk aversion in the sense that the risk aversion is inversely proportional to the current wealth. There is no short-selling restriction in their problem and the corresponding time consistent control was shown to be linear in wealth. However, we discovered that the counterpart of their continuous time equilibrium control in the discrete time framework behaves unsatisfactory, in the sense that the corresponding “optimal” wealth process can take negative values. This negativity in wealth will change the investor into a risk seeker which results in an unbounded value function that is economically unsound. Therefore, the discretized version of the problem in Bjork et al. (2012) might yield solutions with bankruptcy possibility. Furthermore, such “bankruptcy” solution can converge to the solution in continuous counterpart as Björk et al. (2012). This means that the negative risk aversion drawback could appear in implementing the solution in Björk et al. (2012) discretely in practice. This drawback urges us to prohibit short-selling in order to eliminate the chance of getting non-positive wealth. Using backward induction, the equilibrium control in discrete time setting is explicit solvable and is shown to be linear in wealth. An application of the extended Hamilton-Jacobi-Bellman equation leads us to conclude that the continuous time equilibrium control is also linear in wealth. Also, the investment to wealth ratio would satisfy an integral equation which is uniquely solvable. The discrete time equilibrium controls are shown to converge to that in continuous time setting. === published_or_final_version === Mathematics === Master === Master of Philosophy
author2 Yung, SP
author_facet Yung, SP
Wong, Kwok-chuen
黃國全
author Wong, Kwok-chuen
黃國全
author_sort Wong, Kwok-chuen
title Mean variance portfolio management : time consistent approach
title_short Mean variance portfolio management : time consistent approach
title_full Mean variance portfolio management : time consistent approach
title_fullStr Mean variance portfolio management : time consistent approach
title_full_unstemmed Mean variance portfolio management : time consistent approach
title_sort mean variance portfolio management : time consistent approach
publisher The University of Hong Kong (Pokfulam, Hong Kong)
publishDate 2014
url http://hdl.handle.net/10722/196026
work_keys_str_mv AT wongkwokchuen meanvarianceportfoliomanagementtimeconsistentapproach
AT huángguóquán meanvarianceportfoliomanagementtimeconsistentapproach
_version_ 1716814152338505728