A study of chemical reaction optimization

Complex optimization problems are prevalent in various fields of science and engineering. However, many of them belong to a category of problems called NP- hard (nondeterministic polynomial-time hard). On the other hand, due to the powerful capability in solving a myriad of complex optimization...

Full description

Bibliographic Details
Main Authors: Xu, Jin, 徐进
Language:English
Published: The University of Hong Kong (Pokfulam, Hong Kong) 2013
Subjects:
Online Access:http://hdl.handle.net/10722/188725
id ndltd-HKU-oai-hub.hku.hk-10722-188725
record_format oai_dc
spelling ndltd-HKU-oai-hub.hku.hk-10722-1887252015-07-29T04:02:13Z A study of chemical reaction optimization Xu, Jin 徐进 Chemical reactions - Mathematical models. Complex optimization problems are prevalent in various fields of science and engineering. However, many of them belong to a category of problems called NP- hard (nondeterministic polynomial-time hard). On the other hand, due to the powerful capability in solving a myriad of complex optimization problems, metaheuristic approaches have attracted great attention in recent decades. Chemical Reaction Optimization (CRO) is a recently developed metaheuristic mimicking the interactions of molecules in a chemical reaction. With the flexible structure and excellent characteristics, CRO can explore the solution space efficiently to identify the optimal or near optimal solution(s) within an acceptable time. Our research not only designs different versions of CRO and applies them to tackle various NP-hard optimization problems, but also investigates theoretical aspects of CRO in terms of convergence and finite time behavior. We first focus on the problem of task scheduling in grid computing, which involves seeking the most efficient strategy for allocating tasks to resources. In addition to Makespan and Flowtime, we also take reliability of resource into account, and task scheduling is formulated as an optimization problem with three objective functions. Then, four different kinds of CRO are designed to solve this problem. Simulation results show that the CRO methods generally perform better than existing methods and performance improvement is especially significant in large-scale applications. Secondly, we study stock portfolio selection, which pertains to deciding how to allocate investments to a number of stocks. Here we adopt the classical Markowitz mean-variance model and consider an additional cardinality constraint. Thus, the stock portfolio optimization becomes a mixed-integer quadratic programming problem. To solve it, we propose a new version of CRO named Super Molecule-based CRO (S-CRO). Computational experiments suggest that S-CRO is superior to canonical CRO in solving this problem. Thirdly, we apply CRO to the short adjacent repeats identification problem (SARIP), which involves detecting the short adjacent repeats shared by multiple DNA sequences. After proving that SARIP is NP-hard, we test CRO with both synthetic and real data, and compare its performance with BASARD, which is the previous best algorithm for this problem. Simulation results show that CRO performs much better than BASARD in terms of computational time and finding the optimal solution. We also propose a parallel version of CRO (named PCRO) with a synchronous communication scheme. To test its efficiency, we employ PCRO to solve the Quadratic Assignment Problem (QAP), which is a classical combinatorial optimization problem. Simulation results show that compared with canonical sequential CRO, PCRO can reduce the computational time as well as improve the quality of the solution for instances of QAP with large sizes. Finally, we perform theoretical analysis on the convergence and finite time behavior of CRO for combinatorial optimization problems. We explore CRO convergence from two aspects, namely, the elementary reactions and the total system energy. Furthermore, we also investigate the finite time behavior of CRO in respect of convergence rate and first hitting time. published_or_final_version Electrical and Electronic Engineering Doctoral Doctor of Philosophy 2013-09-05T07:53:05Z 2013-09-05T07:53:05Z 2012 2012 PG_Thesis 10.5353/th_b4819924 b4819924 http://hdl.handle.net/10722/188725 eng HKU Theses Online (HKUTO) The author retains all proprietary rights, (such as patent rights) and the right to use in future works. Creative Commons: Attribution 3.0 Hong Kong License The University of Hong Kong (Pokfulam, Hong Kong) http://hub.hku.hk/bib/B48199242
collection NDLTD
language English
sources NDLTD
topic Chemical reactions - Mathematical models.
spellingShingle Chemical reactions - Mathematical models.
Xu, Jin
徐进
A study of chemical reaction optimization
description Complex optimization problems are prevalent in various fields of science and engineering. However, many of them belong to a category of problems called NP- hard (nondeterministic polynomial-time hard). On the other hand, due to the powerful capability in solving a myriad of complex optimization problems, metaheuristic approaches have attracted great attention in recent decades. Chemical Reaction Optimization (CRO) is a recently developed metaheuristic mimicking the interactions of molecules in a chemical reaction. With the flexible structure and excellent characteristics, CRO can explore the solution space efficiently to identify the optimal or near optimal solution(s) within an acceptable time. Our research not only designs different versions of CRO and applies them to tackle various NP-hard optimization problems, but also investigates theoretical aspects of CRO in terms of convergence and finite time behavior. We first focus on the problem of task scheduling in grid computing, which involves seeking the most efficient strategy for allocating tasks to resources. In addition to Makespan and Flowtime, we also take reliability of resource into account, and task scheduling is formulated as an optimization problem with three objective functions. Then, four different kinds of CRO are designed to solve this problem. Simulation results show that the CRO methods generally perform better than existing methods and performance improvement is especially significant in large-scale applications. Secondly, we study stock portfolio selection, which pertains to deciding how to allocate investments to a number of stocks. Here we adopt the classical Markowitz mean-variance model and consider an additional cardinality constraint. Thus, the stock portfolio optimization becomes a mixed-integer quadratic programming problem. To solve it, we propose a new version of CRO named Super Molecule-based CRO (S-CRO). Computational experiments suggest that S-CRO is superior to canonical CRO in solving this problem. Thirdly, we apply CRO to the short adjacent repeats identification problem (SARIP), which involves detecting the short adjacent repeats shared by multiple DNA sequences. After proving that SARIP is NP-hard, we test CRO with both synthetic and real data, and compare its performance with BASARD, which is the previous best algorithm for this problem. Simulation results show that CRO performs much better than BASARD in terms of computational time and finding the optimal solution. We also propose a parallel version of CRO (named PCRO) with a synchronous communication scheme. To test its efficiency, we employ PCRO to solve the Quadratic Assignment Problem (QAP), which is a classical combinatorial optimization problem. Simulation results show that compared with canonical sequential CRO, PCRO can reduce the computational time as well as improve the quality of the solution for instances of QAP with large sizes. Finally, we perform theoretical analysis on the convergence and finite time behavior of CRO for combinatorial optimization problems. We explore CRO convergence from two aspects, namely, the elementary reactions and the total system energy. Furthermore, we also investigate the finite time behavior of CRO in respect of convergence rate and first hitting time. === published_or_final_version === Electrical and Electronic Engineering === Doctoral === Doctor of Philosophy
author Xu, Jin
徐进
author_facet Xu, Jin
徐进
author_sort Xu, Jin
title A study of chemical reaction optimization
title_short A study of chemical reaction optimization
title_full A study of chemical reaction optimization
title_fullStr A study of chemical reaction optimization
title_full_unstemmed A study of chemical reaction optimization
title_sort study of chemical reaction optimization
publisher The University of Hong Kong (Pokfulam, Hong Kong)
publishDate 2013
url http://hdl.handle.net/10722/188725
work_keys_str_mv AT xujin astudyofchemicalreactionoptimization
AT xújìn astudyofchemicalreactionoptimization
AT xujin studyofchemicalreactionoptimization
AT xújìn studyofchemicalreactionoptimization
_version_ 1716813807234318336