Syntactic and Semantic Analysis and Visualization of Unstructured English Texts
People have complex thoughts, and they often express their thoughts with complex sentences using natural languages. This complexity may facilitate efficient communications among the audience with the same knowledge base. But on the other hand, for a different or new audience this composition becomes...
Main Author: | |
---|---|
Format: | Others |
Published: |
Digital Archive @ GSU
2011
|
Subjects: | |
Online Access: | http://digitalarchive.gsu.edu/cs_diss/61 http://digitalarchive.gsu.edu/cgi/viewcontent.cgi?article=1062&context=cs_diss |
id |
ndltd-GEORGIA-oai-digitalarchive.gsu.edu-cs_diss-1062 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-GEORGIA-oai-digitalarchive.gsu.edu-cs_diss-10622013-04-23T03:18:55Z Syntactic and Semantic Analysis and Visualization of Unstructured English Texts Karmakar, Saurav People have complex thoughts, and they often express their thoughts with complex sentences using natural languages. This complexity may facilitate efficient communications among the audience with the same knowledge base. But on the other hand, for a different or new audience this composition becomes cumbersome to understand and analyze. Analysis of such compositions using syntactic or semantic measures is a challenging job and defines the base step for natural language processing. In this dissertation I explore and propose a number of new techniques to analyze and visualize the syntactic and semantic patterns of unstructured English texts. The syntactic analysis is done through a proposed visualization technique which categorizes and compares different English compositions based on their different reading complexity metrics. For the semantic analysis I use Latent Semantic Analysis (LSA) to analyze the hidden patterns in complex compositions. I have used this technique to analyze comments from a social visualization web site for detecting the irrelevant ones (e.g., spam). The patterns of collaborations are also studied through statistical analysis. Word sense disambiguation is used to figure out the correct sense of a word in a sentence or composition. Using textual similarity measure, based on the different word similarity measures and word sense disambiguation on collaborative text snippets from social collaborative environment, reveals a direction to untie the knots of complex hidden patterns of collaboration. 2011-12-14 text application/pdf http://digitalarchive.gsu.edu/cs_diss/61 http://digitalarchive.gsu.edu/cgi/viewcontent.cgi?article=1062&context=cs_diss Computer Science Dissertations Digital Archive @ GSU Readability Complexity depth of field Grammatical structure Visualization Web mining Web information retrieval Recommendation Semantic similarity Word sense disambiguation Natural Language Processing Computer Sciences |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
Readability Complexity depth of field Grammatical structure Visualization Web mining Web information retrieval Recommendation Semantic similarity Word sense disambiguation Natural Language Processing Computer Sciences |
spellingShingle |
Readability Complexity depth of field Grammatical structure Visualization Web mining Web information retrieval Recommendation Semantic similarity Word sense disambiguation Natural Language Processing Computer Sciences Karmakar, Saurav Syntactic and Semantic Analysis and Visualization of Unstructured English Texts |
description |
People have complex thoughts, and they often express their thoughts with complex sentences using natural languages. This complexity may facilitate efficient communications among the audience with the same knowledge base. But on the other hand, for a different or new audience this composition becomes cumbersome to understand and analyze. Analysis of such compositions using syntactic or semantic measures is a challenging job and defines the base step for natural language processing.
In this dissertation I explore and propose a number of new techniques to analyze and visualize the syntactic and semantic patterns of unstructured English texts.
The syntactic analysis is done through a proposed visualization technique which categorizes and compares different English compositions based on their different reading complexity metrics. For the semantic analysis I use Latent Semantic Analysis (LSA) to analyze the hidden patterns in complex compositions. I have used this technique to analyze comments from a social visualization web site for detecting the irrelevant ones (e.g., spam). The patterns of collaborations are also studied through statistical analysis.
Word sense disambiguation is used to figure out the correct sense of a word in a sentence or composition. Using textual similarity measure, based on the different word similarity measures and word sense disambiguation on collaborative text snippets from social collaborative environment, reveals a direction to untie the knots of complex hidden patterns of collaboration. |
author |
Karmakar, Saurav |
author_facet |
Karmakar, Saurav |
author_sort |
Karmakar, Saurav |
title |
Syntactic and Semantic Analysis and Visualization of Unstructured English Texts |
title_short |
Syntactic and Semantic Analysis and Visualization of Unstructured English Texts |
title_full |
Syntactic and Semantic Analysis and Visualization of Unstructured English Texts |
title_fullStr |
Syntactic and Semantic Analysis and Visualization of Unstructured English Texts |
title_full_unstemmed |
Syntactic and Semantic Analysis and Visualization of Unstructured English Texts |
title_sort |
syntactic and semantic analysis and visualization of unstructured english texts |
publisher |
Digital Archive @ GSU |
publishDate |
2011 |
url |
http://digitalarchive.gsu.edu/cs_diss/61 http://digitalarchive.gsu.edu/cgi/viewcontent.cgi?article=1062&context=cs_diss |
work_keys_str_mv |
AT karmakarsaurav syntacticandsemanticanalysisandvisualizationofunstructuredenglishtexts |
_version_ |
1716583961369509888 |