Neutral Particle Transport in Plasma Edge Using Transmission/Escape Probability (TEP) Method
Neutral particles play an important role on the performance of tokamak plasmas. In this dissertation, the original TEP methodology has been extended to take into account linearly (DP_1) and quadratically (DP_2) anisotropic distributions of angular fluxes for calculations of transmission probabilitie...
Main Author: | |
---|---|
Format: | Others |
Language: | en_US |
Published: |
Georgia Institute of Technology
2005
|
Subjects: | |
Online Access: | http://hdl.handle.net/1853/6916 |
id |
ndltd-GATECH-oai-smartech.gatech.edu-1853-6916 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-GATECH-oai-smartech.gatech.edu-1853-69162013-01-07T20:12:02ZNeutral Particle Transport in Plasma Edge Using Transmission/Escape Probability (TEP) MethodZhang, DingkangAverage neutral energy approximationTransmission and escape probability methodNeutral transport in plasmasTokamaksPlasma injectionNeutral particles play an important role on the performance of tokamak plasmas. In this dissertation, the original TEP methodology has been extended to take into account linearly (DP_1) and quadratically (DP_2) anisotropic distributions of angular fluxes for calculations of transmission probabilities. Three approaches, subdivision of optically thick regions, expansion of collision sources and the diffusion approximation, have been developed and implemented to correct effects of the preferential probability of collided neutrals escaping back across the incident surface. Solving the diffusion equation via the finite element method has been shown to be the most computationally efficient and accurate for a broader range of D/l by comparisons with Monte Carlo simulations. The average neutral energy (ANE) approximation has been developed and implemented into the GTNEUT code. The average neutral energy approximation has been demonstrated to be more accurate than the original local ion temperature (LIT) approximation for optically thin regions. The simulations of the upgraded GTNEUT code excellently agree with the DEGAS predictions in DIII-D L-mode and H-mode discharges, and the results of both the codes are in a good agreement with the experimental measurements.Georgia Institute of Technology2005-07-28T18:00:55Z2005-07-28T18:00:55Z2005-04-26Dissertation1445861 bytesapplication/pdfhttp://hdl.handle.net/1853/6916en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
topic |
Average neutral energy approximation Transmission and escape probability method Neutral transport in plasmas Tokamaks Plasma injection |
spellingShingle |
Average neutral energy approximation Transmission and escape probability method Neutral transport in plasmas Tokamaks Plasma injection Zhang, Dingkang Neutral Particle Transport in Plasma Edge Using Transmission/Escape Probability (TEP) Method |
description |
Neutral particles play an important role on the performance of tokamak plasmas. In this dissertation, the original TEP methodology has been extended to take into account linearly (DP_1) and quadratically (DP_2) anisotropic distributions of angular fluxes for calculations of transmission probabilities. Three approaches, subdivision of optically thick regions, expansion of collision sources and the diffusion approximation, have been developed and implemented to correct effects of the preferential probability of collided neutrals escaping back across the incident surface. Solving the diffusion equation via the finite element method has been shown to be the most computationally efficient and accurate for a broader range of D/l by comparisons with Monte Carlo simulations. The average neutral energy (ANE) approximation has been developed and implemented into the GTNEUT code. The average neutral energy approximation has been demonstrated to be more accurate than the original local ion temperature (LIT) approximation for optically thin regions.
The simulations of the upgraded GTNEUT code excellently agree with the DEGAS predictions in DIII-D L-mode and H-mode discharges, and the results of both the codes are in a good agreement with the experimental measurements. |
author |
Zhang, Dingkang |
author_facet |
Zhang, Dingkang |
author_sort |
Zhang, Dingkang |
title |
Neutral Particle Transport in Plasma Edge Using Transmission/Escape Probability (TEP) Method |
title_short |
Neutral Particle Transport in Plasma Edge Using Transmission/Escape Probability (TEP) Method |
title_full |
Neutral Particle Transport in Plasma Edge Using Transmission/Escape Probability (TEP) Method |
title_fullStr |
Neutral Particle Transport in Plasma Edge Using Transmission/Escape Probability (TEP) Method |
title_full_unstemmed |
Neutral Particle Transport in Plasma Edge Using Transmission/Escape Probability (TEP) Method |
title_sort |
neutral particle transport in plasma edge using transmission/escape probability (tep) method |
publisher |
Georgia Institute of Technology |
publishDate |
2005 |
url |
http://hdl.handle.net/1853/6916 |
work_keys_str_mv |
AT zhangdingkang neutralparticletransportinplasmaedgeusingtransmissionescapeprobabilitytepmethod |
_version_ |
1716474211011133440 |