Advanced optical microscopy for three dimensional deformation, profile and tomography measurement

Deformation, profile and tomography measurement is critical for engineering materials characterization and engineering structure component design, analysis and biomedical application. The current existing 3D measurement method, such as stylus based profilometry, 3D optical stereo imaging and focus s...

Full description

Bibliographic Details
Main Author: Pan, Zhipeng
Other Authors: Xia, Shuman
Format: Others
Language:en_US
Published: Georgia Institute of Technology 2016
Subjects:
Online Access:http://hdl.handle.net/1853/54908
Description
Summary:Deformation, profile and tomography measurement is critical for engineering materials characterization and engineering structure component design, analysis and biomedical application. The current existing 3D measurement method, such as stylus based profilometry, 3D optical stereo imaging and focus stacking, either suffers from low sampling speed from spatial scanning or maximum thickness of the specimen that could be imaged due to physical constraints. This thesis is dedicated to develop a hybrid 3D measurement method that can be easily implemented with fast imaging speed for dynamic process at the microscale. Also, at the microscale, the reduced depth of focus of existing microscope system greatly limits the maximum depth of the specimen that could be imaged, especially at high magnification. In this study, a 3D tomography system will be developed with extended depth of focus and improved axial resolution.