Isolation of homogenous cardiac cell populations from differentiating pluripotent stem cells using molecular beacons

Human pluripotent stem cells (hPSCs) hold the potential to revolutionize cardiac tissue engineering. Because of their ability to proliferate and differentiate into all cardiomyocyte subtypes they represent an opportunity to regenerate virtually any tissue lost from the over 1 million cardiac disease...

Full description

Bibliographic Details
Main Author: Wile, Brian
Other Authors: Bao, Gang
Format: Others
Language:en_US
Published: Georgia Institute of Technology 2015
Subjects:
Online Access:http://hdl.handle.net/1853/53447
id ndltd-GATECH-oai-smartech.gatech.edu-1853-53447
record_format oai_dc
spelling ndltd-GATECH-oai-smartech.gatech.edu-1853-534472015-06-27T03:39:48ZIsolation of homogenous cardiac cell populations from differentiating pluripotent stem cells using molecular beaconsWile, BrianStem cellsMolecular beaconsMessenger RNAToxicology screenHuman pluripotent stem cells (hPSCs) hold the potential to revolutionize cardiac tissue engineering. Because of their ability to proliferate and differentiate into all cardiomyocyte subtypes they represent an opportunity to regenerate virtually any tissue lost from the over 1 million cardiac disease patients in the United States alone. Studies have shown, however, that hPSCs which are not terminally differentiated pose a variety of risks including teratoma formation and lack of appropriate cell engraftment. It is therefore important to ensure that only well characterized cardiac subtypes are implanted into patients or used for research purposes. Current differentiation protocols generate a mixture of cardiac subtypes, and research on cardiac subtype specification is hampered by the lack of a high throughput method to distinguish cardiac subtypes. This thesis establishes the ability to identify, enrich and characterize cardiac subtypes using MBs. This will provide a robust tool for clinical use of hPSCs in cardiac cell therapy and for analysis of differentiation protocol effects on cardiac subtype formation.Georgia Institute of TechnologyBao, Gang2015-06-08T18:14:35Z2015-06-09T05:30:07Z2014-052014-04-03May 20142015-06-08T18:14:35ZDissertationapplication/pdfhttp://hdl.handle.net/1853/53447en_US
collection NDLTD
language en_US
format Others
sources NDLTD
topic Stem cells
Molecular beacons
Messenger RNA
Toxicology screen
spellingShingle Stem cells
Molecular beacons
Messenger RNA
Toxicology screen
Wile, Brian
Isolation of homogenous cardiac cell populations from differentiating pluripotent stem cells using molecular beacons
description Human pluripotent stem cells (hPSCs) hold the potential to revolutionize cardiac tissue engineering. Because of their ability to proliferate and differentiate into all cardiomyocyte subtypes they represent an opportunity to regenerate virtually any tissue lost from the over 1 million cardiac disease patients in the United States alone. Studies have shown, however, that hPSCs which are not terminally differentiated pose a variety of risks including teratoma formation and lack of appropriate cell engraftment. It is therefore important to ensure that only well characterized cardiac subtypes are implanted into patients or used for research purposes. Current differentiation protocols generate a mixture of cardiac subtypes, and research on cardiac subtype specification is hampered by the lack of a high throughput method to distinguish cardiac subtypes. This thesis establishes the ability to identify, enrich and characterize cardiac subtypes using MBs. This will provide a robust tool for clinical use of hPSCs in cardiac cell therapy and for analysis of differentiation protocol effects on cardiac subtype formation.
author2 Bao, Gang
author_facet Bao, Gang
Wile, Brian
author Wile, Brian
author_sort Wile, Brian
title Isolation of homogenous cardiac cell populations from differentiating pluripotent stem cells using molecular beacons
title_short Isolation of homogenous cardiac cell populations from differentiating pluripotent stem cells using molecular beacons
title_full Isolation of homogenous cardiac cell populations from differentiating pluripotent stem cells using molecular beacons
title_fullStr Isolation of homogenous cardiac cell populations from differentiating pluripotent stem cells using molecular beacons
title_full_unstemmed Isolation of homogenous cardiac cell populations from differentiating pluripotent stem cells using molecular beacons
title_sort isolation of homogenous cardiac cell populations from differentiating pluripotent stem cells using molecular beacons
publisher Georgia Institute of Technology
publishDate 2015
url http://hdl.handle.net/1853/53447
work_keys_str_mv AT wilebrian isolationofhomogenouscardiaccellpopulationsfromdifferentiatingpluripotentstemcellsusingmolecularbeacons
_version_ 1716806555139047424