The economics of internet peering interconnections

The Internet at the interdomain level is a complex network of approximately 50,000 Autonomous Systems (ASes). ASes interconnect through two types of links: (a) transit (customer-provider) and (b) peering links. Recent studies have shown that despite being optional for most ASes, a rich and dynamic p...

Full description

Bibliographic Details
Main Author: Lodhi, Aemen Hassaan
Other Authors: Dovrolis, Constantine
Format: Others
Language:en_US
Published: Georgia Institute of Technology 2015
Subjects:
Online Access:http://hdl.handle.net/1853/53092
id ndltd-GATECH-oai-smartech.gatech.edu-1853-53092
record_format oai_dc
spelling ndltd-GATECH-oai-smartech.gatech.edu-1853-530922015-02-05T15:35:21ZThe economics of internet peering interconnectionsLodhi, Aemen HassaanInternetInterdomain peeringEconomicsAutonomous systemsComputational modelingThe Internet at the interdomain level is a complex network of approximately 50,000 Autonomous Systems (ASes). ASes interconnect through two types of links: (a) transit (customer-provider) and (b) peering links. Recent studies have shown that despite being optional for most ASes, a rich and dynamic peering fabric exists among ASes. Peering has also grown as one of the main instruments for catching up with asymmetric traffic due to CDNs, online video traffic, performance requirements, etc. Moreover, peering has been in the spotlight recently because of peering conflicts between major ISPs and Content Providers. Such conflicts have led to calls for intervention by communication regulators and legislation at the highest levels of government. Peering disputes have also sometimes resulted in partitioning of the Internet. Despite the broad interest and intense debate about peering, several fundamental questions remain elusive. The objective of this thesis is to study peering from a techno-economics perspective. We explore the following questions: 1- What are the main sources of complexity in Internet peering that defy the development of an automated approach to assess peering relationships? 2- What is the current state of the peering ecosystem, e.g., which categories of ASes are more inclined towards peering? What are the most popular peering strategies among ASes in the Internet? 3- What can we say about the economics of contemporary peering practices, e.g., what is the impact of using different peering traffic ratios as a strategy to choose peers? Is the general notion that peering saves network costs, always valid? 4- Can we propose novel methods for peering that result in more stable and fair peering interconnections? We have used game-theoretic modeling, large-scale computational agent-based modeling, and analysis of publicly available peering data to answer the above questions. The main contributions of this thesis include: 1- Identification of fundamental complexities underlying the evaluation of peers and formation of stable peering links in the interdomain network. 2- An empirical study of the state of the peering ecosystem from August 2010 to August 2013. 3- Development of a large-scale agent-based computational model to study the formation and evolution of Internet peering interconnections. 4- A plausible explanation for the gravitation of Internet transit providers towards Open peering and a prediction of its future consequences. 5- We propose a variant of the Open peering policy and a new policy based on cost-benefit analysis to replace the contemporary simplistic policies.Georgia Institute of TechnologyDovrolis, Constantine2015-01-12T20:53:01Z2015-01-12T20:53:01Z2014-122014-11-17December 20142015-01-12T20:53:01ZDissertationapplication/pdfhttp://hdl.handle.net/1853/53092en_US
collection NDLTD
language en_US
format Others
sources NDLTD
topic Internet
Interdomain peering
Economics
Autonomous systems
Computational modeling
spellingShingle Internet
Interdomain peering
Economics
Autonomous systems
Computational modeling
Lodhi, Aemen Hassaan
The economics of internet peering interconnections
description The Internet at the interdomain level is a complex network of approximately 50,000 Autonomous Systems (ASes). ASes interconnect through two types of links: (a) transit (customer-provider) and (b) peering links. Recent studies have shown that despite being optional for most ASes, a rich and dynamic peering fabric exists among ASes. Peering has also grown as one of the main instruments for catching up with asymmetric traffic due to CDNs, online video traffic, performance requirements, etc. Moreover, peering has been in the spotlight recently because of peering conflicts between major ISPs and Content Providers. Such conflicts have led to calls for intervention by communication regulators and legislation at the highest levels of government. Peering disputes have also sometimes resulted in partitioning of the Internet. Despite the broad interest and intense debate about peering, several fundamental questions remain elusive. The objective of this thesis is to study peering from a techno-economics perspective. We explore the following questions: 1- What are the main sources of complexity in Internet peering that defy the development of an automated approach to assess peering relationships? 2- What is the current state of the peering ecosystem, e.g., which categories of ASes are more inclined towards peering? What are the most popular peering strategies among ASes in the Internet? 3- What can we say about the economics of contemporary peering practices, e.g., what is the impact of using different peering traffic ratios as a strategy to choose peers? Is the general notion that peering saves network costs, always valid? 4- Can we propose novel methods for peering that result in more stable and fair peering interconnections? We have used game-theoretic modeling, large-scale computational agent-based modeling, and analysis of publicly available peering data to answer the above questions. The main contributions of this thesis include: 1- Identification of fundamental complexities underlying the evaluation of peers and formation of stable peering links in the interdomain network. 2- An empirical study of the state of the peering ecosystem from August 2010 to August 2013. 3- Development of a large-scale agent-based computational model to study the formation and evolution of Internet peering interconnections. 4- A plausible explanation for the gravitation of Internet transit providers towards Open peering and a prediction of its future consequences. 5- We propose a variant of the Open peering policy and a new policy based on cost-benefit analysis to replace the contemporary simplistic policies.
author2 Dovrolis, Constantine
author_facet Dovrolis, Constantine
Lodhi, Aemen Hassaan
author Lodhi, Aemen Hassaan
author_sort Lodhi, Aemen Hassaan
title The economics of internet peering interconnections
title_short The economics of internet peering interconnections
title_full The economics of internet peering interconnections
title_fullStr The economics of internet peering interconnections
title_full_unstemmed The economics of internet peering interconnections
title_sort economics of internet peering interconnections
publisher Georgia Institute of Technology
publishDate 2015
url http://hdl.handle.net/1853/53092
work_keys_str_mv AT lodhiaemenhassaan theeconomicsofinternetpeeringinterconnections
AT lodhiaemenhassaan economicsofinternetpeeringinterconnections
_version_ 1716729837131923456