Learning matrix and functional models in high-dimensions
Statistical machine learning methods provide us with a principled framework for extracting meaningful information from noisy high-dimensional data sets. A significant feature of such procedures is that the inferences made are statistically significant, computationally efficient and scientifically me...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
Georgia Institute of Technology
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/1853/52284 |