Automated damage assessment of reinforced concrete columns for post-earthquake evaluations
An automated method in damage state assessment of reinforced concrete columns for the purpose of establishing a rapid and quantitative post-earthquake safety and structural evaluation procedure is proposed. Several techniques from the fields of computer vision and image processing are employed in or...
Main Author: | |
---|---|
Published: |
Georgia Institute of Technology
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/1853/47686 |
id |
ndltd-GATECH-oai-smartech.gatech.edu-1853-47686 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-GATECH-oai-smartech.gatech.edu-1853-476862013-08-21T04:10:00ZAutomated damage assessment of reinforced concrete columns for post-earthquake evaluationsGerman, Stephanie AnnDamage property retrievalDamage detectionReinforced concretePost-earthquakeSafety evaluationsComputer visionStructural health monitoringStructural analysis (Engineering)Nondestructive testingImage processingAn automated method in damage state assessment of reinforced concrete columns for the purpose of establishing a rapid and quantitative post-earthquake safety and structural evaluation procedure is proposed. Several techniques from the fields of computer vision and image processing are employed in order to develop a set of methods capable of automatically detecting spalled regions on the surface of reinforced concrete columns as well as the properties of cracks and spalled regions on these surfaces. The resulting properties of the observed visible damage on the reinforced concrete column surfaces are then utilized to automatically estimate the existing condition and safety of the column. The damage state is quantified according to the maximum drift capacity of the column. The methods proposed in this research were implemented in a Microsoft Visual Studio .NET environment, and tested on real images of damaged columns. The test results indicated that the methods could automatically detect spalled regions and retrieve the properties of spalling and cracks on reinforced concrete column surfaces in images or video frames, and further, that this retrieved information could be accurately translate to a meaningful assessment of the column's existing damage state in the form of the maximum drift capacity.Georgia Institute of Technology2013-06-15T02:58:21Z2013-06-15T02:58:21Z2013-04-10Dissertationhttp://hdl.handle.net/1853/47686 |
collection |
NDLTD |
sources |
NDLTD |
topic |
Damage property retrieval Damage detection Reinforced concrete Post-earthquake Safety evaluations Computer vision Structural health monitoring Structural analysis (Engineering) Nondestructive testing Image processing |
spellingShingle |
Damage property retrieval Damage detection Reinforced concrete Post-earthquake Safety evaluations Computer vision Structural health monitoring Structural analysis (Engineering) Nondestructive testing Image processing German, Stephanie Ann Automated damage assessment of reinforced concrete columns for post-earthquake evaluations |
description |
An automated method in damage state assessment of reinforced concrete columns for the purpose of establishing a rapid and quantitative post-earthquake safety and structural evaluation procedure is proposed. Several techniques from the fields of computer vision and image processing are employed in order to develop a set of methods capable of automatically detecting spalled regions on the surface of reinforced concrete columns as well as the properties of cracks and spalled regions on these surfaces. The resulting properties of the observed visible damage on the reinforced concrete column surfaces are then utilized to automatically estimate the existing condition and safety of the column. The damage state is quantified according to the maximum drift capacity of the column. The methods proposed in this research were implemented in a Microsoft Visual Studio .NET environment, and tested on real images of damaged columns. The test results indicated that the methods could automatically detect spalled regions and retrieve the properties of spalling and cracks on reinforced concrete column surfaces in images or video frames, and further, that this retrieved information could be accurately translate to a meaningful assessment of the column's existing damage state in the form of the maximum drift capacity. |
author |
German, Stephanie Ann |
author_facet |
German, Stephanie Ann |
author_sort |
German, Stephanie Ann |
title |
Automated damage assessment of reinforced concrete columns for post-earthquake evaluations |
title_short |
Automated damage assessment of reinforced concrete columns for post-earthquake evaluations |
title_full |
Automated damage assessment of reinforced concrete columns for post-earthquake evaluations |
title_fullStr |
Automated damage assessment of reinforced concrete columns for post-earthquake evaluations |
title_full_unstemmed |
Automated damage assessment of reinforced concrete columns for post-earthquake evaluations |
title_sort |
automated damage assessment of reinforced concrete columns for post-earthquake evaluations |
publisher |
Georgia Institute of Technology |
publishDate |
2013 |
url |
http://hdl.handle.net/1853/47686 |
work_keys_str_mv |
AT germanstephanieann automateddamageassessmentofreinforcedconcretecolumnsforpostearthquakeevaluations |
_version_ |
1716596239668084736 |