Online optimal obstacle avoidance for rotary-wing autonomous unmanned aerial vehicles

This thesis presents an integrated framework for online obstacle avoidance of rotary-wing unmanned aerial vehicles (UAVs), which can provide UAVs an obstacle field navigation capability in a partially or completely unknown obstacle-rich environment. The framework is composed of a LIDAR interface, a...

Full description

Bibliographic Details
Main Author: Kang, Keeryun
Published: Georgia Institute of Technology 2012
Subjects:
UAV
Online Access:http://hdl.handle.net/1853/44820
Description
Summary:This thesis presents an integrated framework for online obstacle avoidance of rotary-wing unmanned aerial vehicles (UAVs), which can provide UAVs an obstacle field navigation capability in a partially or completely unknown obstacle-rich environment. The framework is composed of a LIDAR interface, a local obstacle grid generation, a receding horizon (RH) trajectory optimizer, a global shortest path search algorithm, and a climb rate limit detection logic. The key feature of the framework is the use of an optimization-based trajectory generation in which the obstacle avoidance problem is formulated as a nonlinear trajectory optimization problem with state and input constraints over the finite range of the sensor. This local trajectory optimization is combined with a global path search algorithm which provides a useful initial guess to the nonlinear optimization solver. Optimization is the natural process of finding the best trajectory that is dynamically feasible, safe within the vehicle's flight envelope, and collision-free at the same time. The optimal trajectory is continuously updated in real time by the numerical optimization solver, Nonlinear Trajectory Generation (NTG), which is a direct solver based on the spline approximation of trajectory for dynamically flat systems. In fact, the overall approach of this thesis to finding the optimal trajectory is similar to the model predictive control (MPC) or the receding horizon control (RHC), except that this thesis followed a two-layer design; thus, the optimal solution works as a guidance command to be followed by the controller of the vehicle. The framework is implemented in a real-time simulation environment, the Georgia Tech UAV Simulation Tool (GUST), and integrated in the onboard software of the rotary-wing UAV test-bed at Georgia Tech. Initially, the 2D vertical avoidance capability of real obstacles was tested in flight. Then the flight test evaluations were extended to the benchmark tests for 3D avoidance capability over the virtual obstacles, and finally it was demonstrated on real obstacles located at the McKenna MOUT site in Fort Benning, Georgia. Simulations and flight test evaluations demonstrate the feasibility of the developed framework for UAV applications involving low-altitude flight in an urban area.