Pulse height tally response expansion method for application in detector problems

A pulse height tally response expansion (PHRE) method is developed for detectors. By expanding the incident flux at the detector window/surface, a set of response functions is constructed via Monte Carlo estimators for pulse height tallies. B-spline functions are selected to perform the expansion of...

Full description

Bibliographic Details
Main Author: Zipperer, Travis Jonathan
Published: Georgia Institute of Technology 2012
Subjects:
Online Access:http://hdl.handle.net/1853/44816
Description
Summary:A pulse height tally response expansion (PHRE) method is developed for detectors. By expanding the incident flux at the detector window/surface, a set of response functions is constructed via Monte Carlo estimators for pulse height tallies. B-spline functions are selected to perform the expansion of the response functions as well as for the expansion of the incident flux in photon energy. The method is verified for several incident flux spectra on a CsI(Na) detector. Results are compared to the solutions generated using direct Monte Carlo calculations. It is found that the method is several orders faster than MCNP5 while maintaining paralleled accuracy.