Isospectral graph reductions, estimates of matrices' spectra, and eventually negative Schwarzian systems

This dissertation can be essentially divided into two parts. The first, consisting of Chapters I, II, and III, studies the graph theoretic nature of complex systems. This includes the spectral properties of such systems and in particular their influence on the systems dynamics. In the second part of...

Full description

Bibliographic Details
Main Author: Webb, Benjamin Zachary
Published: Georgia Institute of Technology 2011
Subjects:
Online Access:http://hdl.handle.net/1853/39521
id ndltd-GATECH-oai-smartech.gatech.edu-1853-39521
record_format oai_dc
spelling ndltd-GATECH-oai-smartech.gatech.edu-1853-395212013-01-07T20:37:25ZIsospectral graph reductions, estimates of matrices' spectra, and eventually negative Schwarzian systemsWebb, Benjamin ZacharySchwarzian derivativeGlobal stabilityDynamical networksSpectral equivalenceGraph transformationsComplex matricesAttractors (Mathematics)EigenvaluesThis dissertation can be essentially divided into two parts. The first, consisting of Chapters I, II, and III, studies the graph theoretic nature of complex systems. This includes the spectral properties of such systems and in particular their influence on the systems dynamics. In the second part of this dissertation, or Chapter IV, we consider a new class of one-dimensional dynamical systems or functions with an eventual negative Schwarzian derivative motivated by some maps arising in neuroscience. To aid in understanding the interplay between the graph structure of a network and its dynamics we first introduce the concept of an isospectral graph reduction in Chapter I. Mathematically, an isospectral graph transformation is a graph operation (equivalently matrix operation) that modifies the structure of a graph while preserving the eigenvalues of the graphs weighted adjacency matrix. Because of their properties such reductions can be used to study graphs (networks) modulo any specific graph structure e.g. cycles of length n, cliques of size k, nodes of minimal/maximal degree, centrality, betweenness, etc. The theory of isospectral graph reductions has also lead to improvements in the general theory of eigenvalue approximation. Specifically, such reductions can be used to improved the classical eigenvalue estimates of Gershgorin, Brauer, Brualdi, and Varga for a complex valued matrix. The details of these specific results are found in Chapter II. The theory of isospectral graph transformations is then used in Chapter III to study time-delayed dynamical systems and develop the notion of a dynamical network expansion and reduction which can be used to determine whether a network of interacting dynamical systems has a unique global attractor. In Chapter IV we consider one-dimensional dynamical systems of an interval. In the study of such systems it is often assumed that the functions involved have a negative Schwarzian derivative. Here we consider a generalization of this condition. Specifically, we consider the functions which have some iterate with a negative Schwarzian derivative and show that many known results generalize to this larger class of functions. This includes both systems with regular as well as chaotic dynamic properties.Georgia Institute of Technology2011-07-06T16:25:08Z2011-07-06T16:25:08Z2011-03-18Dissertationhttp://hdl.handle.net/1853/39521
collection NDLTD
sources NDLTD
topic Schwarzian derivative
Global stability
Dynamical networks
Spectral equivalence
Graph transformations
Complex matrices
Attractors (Mathematics)
Eigenvalues
spellingShingle Schwarzian derivative
Global stability
Dynamical networks
Spectral equivalence
Graph transformations
Complex matrices
Attractors (Mathematics)
Eigenvalues
Webb, Benjamin Zachary
Isospectral graph reductions, estimates of matrices' spectra, and eventually negative Schwarzian systems
description This dissertation can be essentially divided into two parts. The first, consisting of Chapters I, II, and III, studies the graph theoretic nature of complex systems. This includes the spectral properties of such systems and in particular their influence on the systems dynamics. In the second part of this dissertation, or Chapter IV, we consider a new class of one-dimensional dynamical systems or functions with an eventual negative Schwarzian derivative motivated by some maps arising in neuroscience. To aid in understanding the interplay between the graph structure of a network and its dynamics we first introduce the concept of an isospectral graph reduction in Chapter I. Mathematically, an isospectral graph transformation is a graph operation (equivalently matrix operation) that modifies the structure of a graph while preserving the eigenvalues of the graphs weighted adjacency matrix. Because of their properties such reductions can be used to study graphs (networks) modulo any specific graph structure e.g. cycles of length n, cliques of size k, nodes of minimal/maximal degree, centrality, betweenness, etc. The theory of isospectral graph reductions has also lead to improvements in the general theory of eigenvalue approximation. Specifically, such reductions can be used to improved the classical eigenvalue estimates of Gershgorin, Brauer, Brualdi, and Varga for a complex valued matrix. The details of these specific results are found in Chapter II. The theory of isospectral graph transformations is then used in Chapter III to study time-delayed dynamical systems and develop the notion of a dynamical network expansion and reduction which can be used to determine whether a network of interacting dynamical systems has a unique global attractor. In Chapter IV we consider one-dimensional dynamical systems of an interval. In the study of such systems it is often assumed that the functions involved have a negative Schwarzian derivative. Here we consider a generalization of this condition. Specifically, we consider the functions which have some iterate with a negative Schwarzian derivative and show that many known results generalize to this larger class of functions. This includes both systems with regular as well as chaotic dynamic properties.
author Webb, Benjamin Zachary
author_facet Webb, Benjamin Zachary
author_sort Webb, Benjamin Zachary
title Isospectral graph reductions, estimates of matrices' spectra, and eventually negative Schwarzian systems
title_short Isospectral graph reductions, estimates of matrices' spectra, and eventually negative Schwarzian systems
title_full Isospectral graph reductions, estimates of matrices' spectra, and eventually negative Schwarzian systems
title_fullStr Isospectral graph reductions, estimates of matrices' spectra, and eventually negative Schwarzian systems
title_full_unstemmed Isospectral graph reductions, estimates of matrices' spectra, and eventually negative Schwarzian systems
title_sort isospectral graph reductions, estimates of matrices' spectra, and eventually negative schwarzian systems
publisher Georgia Institute of Technology
publishDate 2011
url http://hdl.handle.net/1853/39521
work_keys_str_mv AT webbbenjaminzachary isospectralgraphreductionsestimatesofmatricesspectraandeventuallynegativeschwarziansystems
_version_ 1716475492851253248