An adsorption based cooling solution for electronics used in thermally harsh environments

Growing need for application of electronics at temperatures beyond their rated limit, (usually > 150 °C) and the non availability of high temperature compatible electronics necessitates thermal management solutions that should be compact, scalable, reliable and be able to work in environments cha...

Full description

Bibliographic Details
Main Author: Sinha, Ashish
Published: Georgia Institute of Technology 2011
Subjects:
Online Access:http://hdl.handle.net/1853/37077
Description
Summary:Growing need for application of electronics at temperatures beyond their rated limit, (usually > 150 °C) and the non availability of high temperature compatible electronics necessitates thermal management solutions that should be compact, scalable, reliable and be able to work in environments characterized by high temperature (150 -250 °C), mechanical shock and vibrations. In this backdrop the proposed research aims at realization of an adsorption cooling system for evaporator temperatures in the range of 140 °C-150 °C, and condenser temperature in the range of 160 °C-200 °C. Adsorption cooling systems have few moving parts (hence less maintenance issues), and the use of Thermo-Electric (TE) devices to regenerate heat of adsorption in between adsorbent beds enhances the compactness and efficiency of the overall 'ThermoElectric-Adsorption' (TEA) system. The work presented identifies the challenges involved and respective solutions for high temperature application. An experimental set up was fabricated to demonstrate system operation and mathematical models developed to benchmark experimental results. Also, it should be noted that TEA system comprises TE and adsorption chillers. A TE device can be a compact cooler in its own right. Hence a comparison of the performance of TEA and TE cooling systems has also been presented.