Experimental and Numerical Investigation of Thermocapillary Effects in Thin Liquid Layers
Thin liquid layers have been proposed for heat extraction and protection of the solid surfaces of divertors in magnetic fusion reactors. A number of conceptual designs for plasma-facing components (PFC) use stationary and flowing liquid layers as a renewable first wall for reactor chambers to remov...
Main Author: | |
---|---|
Published: |
Georgia Institute of Technology
2008
|
Subjects: | |
Online Access: | http://hdl.handle.net/1853/19837 |
id |
ndltd-GATECH-oai-smartech.gatech.edu-1853-19837 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-GATECH-oai-smartech.gatech.edu-1853-198372013-01-07T20:24:05ZExperimental and Numerical Investigation of Thermocapillary Effects in Thin Liquid LayersKoehler, Timothy P.Liquid protectionFusionThin filmsThermocapillaryRuptureDry-outLiquid filmsHeat ConvectionFusion reactorsThin liquid layers have been proposed for heat extraction and protection of the solid surfaces of divertors in magnetic fusion reactors. A number of conceptual designs for plasma-facing components (PFC) use stationary and flowing liquid layers as a renewable first wall for reactor chambers to remove heat and shield solid surfaces from damaging radiation while maintaining acceptable plasma purity levels. Such liquid-protected PFC have the potential to make fusion more commercially attractive by increasing reactor lifetimes and decreasing failure rates. The results of this research will help identify the parameter ranges for successful operation of such protection schemes. This thesis investigates the thermocapillary behavior of axisymmetric horizontal liquid layers with initial heights from 0.27 to 3.0 mm. A negative radial temperature gradient is imposed at the bottom of the liquid layer. Experimental, numerical and asymptotic analyses were carried out for thin layers where buoyancy forces are negligible. A novel asymptotic solution for this axisymmetric geometry was derived from the previous two-dimensional long-wave analysis by Sen et al. (1982). A numerical simulation using the level contour reconstruction method was used to follow the evolution of the liquid-gas interface above an axisymmetric non-isothermal solid surface. Experimental validation of the theoretical and numerical studies was performed using silicone oils of various viscosities (μ = 0.48 × 10-2 9.6 × 10-2 N s/m2). Two measurement techniques, a needle contact method and laser-confocal displacement method, were employed to obtain height profiles for applied temperature differences up to 65°C. Finally, reflectance shadowgraphy was used to visualize free-surface deformation and classify flow regimes in thick layers, where the assumptions of negligible buoyancy and axisymmetric flow are no longer valid. The results of this investigation will allow designers to determine operating windows for successful implementation of liquid-protected PFC.Georgia Institute of Technology2008-02-07T18:43:29Z2008-02-07T18:43:29Z2007-10-02Dissertationhttp://hdl.handle.net/1853/19837 |
collection |
NDLTD |
sources |
NDLTD |
topic |
Liquid protection Fusion Thin films Thermocapillary Rupture Dry-out Liquid films Heat Convection Fusion reactors |
spellingShingle |
Liquid protection Fusion Thin films Thermocapillary Rupture Dry-out Liquid films Heat Convection Fusion reactors Koehler, Timothy P. Experimental and Numerical Investigation of Thermocapillary Effects in Thin Liquid Layers |
description |
Thin liquid layers have been proposed for heat extraction and protection of the solid surfaces of divertors in magnetic fusion reactors. A number of conceptual designs for plasma-facing components (PFC) use stationary and flowing liquid layers as a renewable first wall for reactor chambers to remove heat and shield solid surfaces from damaging radiation while maintaining acceptable plasma purity levels. Such liquid-protected PFC have the potential to make fusion more commercially attractive by increasing reactor lifetimes and decreasing failure rates. The results of this research will help identify the parameter ranges for successful operation of such protection schemes.
This thesis investigates the thermocapillary behavior of axisymmetric horizontal liquid layers with initial heights from 0.27 to 3.0 mm. A negative radial temperature gradient is imposed at the bottom of the liquid layer. Experimental, numerical and asymptotic analyses were carried out for thin layers where buoyancy forces are negligible. A novel asymptotic solution for this axisymmetric geometry was derived from the previous two-dimensional long-wave analysis by Sen et al. (1982). A numerical simulation using the level contour reconstruction method was used to follow the evolution of the liquid-gas interface above an axisymmetric non-isothermal solid surface. Experimental validation of the theoretical and numerical studies was performed using silicone oils of various viscosities (μ = 0.48 × 10-2 9.6 × 10-2 N s/m2). Two measurement techniques, a needle contact method and laser-confocal displacement method, were employed to obtain height profiles for applied temperature differences up to 65°C. Finally, reflectance shadowgraphy was used to visualize free-surface deformation and classify flow regimes in thick layers, where the assumptions of negligible buoyancy and axisymmetric flow are no longer valid. The results of this investigation will allow designers to determine operating windows for successful implementation of liquid-protected PFC. |
author |
Koehler, Timothy P. |
author_facet |
Koehler, Timothy P. |
author_sort |
Koehler, Timothy P. |
title |
Experimental and Numerical Investigation of Thermocapillary Effects in Thin Liquid Layers |
title_short |
Experimental and Numerical Investigation of Thermocapillary Effects in Thin Liquid Layers |
title_full |
Experimental and Numerical Investigation of Thermocapillary Effects in Thin Liquid Layers |
title_fullStr |
Experimental and Numerical Investigation of Thermocapillary Effects in Thin Liquid Layers |
title_full_unstemmed |
Experimental and Numerical Investigation of Thermocapillary Effects in Thin Liquid Layers |
title_sort |
experimental and numerical investigation of thermocapillary effects in thin liquid layers |
publisher |
Georgia Institute of Technology |
publishDate |
2008 |
url |
http://hdl.handle.net/1853/19837 |
work_keys_str_mv |
AT koehlertimothyp experimentalandnumericalinvestigationofthermocapillaryeffectsinthinliquidlayers |
_version_ |
1716474786451816448 |