Sample Average Approximation of Risk-Averse Stochastic Programs
Sample average approximation (SAA) is a well-known solution methodology for traditional stochastic programs which are risk neutral in the sense that they consider optimization of expectation functionals. In this thesis we establish sample average approximation methods for two classes of non-traditio...
Main Author: | |
---|---|
Published: |
Georgia Institute of Technology
2008
|
Subjects: | |
Online Access: | http://hdl.handle.net/1853/19784 |
id |
ndltd-GATECH-oai-smartech.gatech.edu-1853-19784 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-GATECH-oai-smartech.gatech.edu-1853-197842013-01-07T20:23:55ZSample Average Approximation of Risk-Averse Stochastic ProgramsWang, WeiExpected value constrained programMean absolute deviationConditional value-at-riskPortfolio optimizationSupply chain network designStochastic min-max programStochastic processesSample average approximation (SAA) is a well-known solution methodology for traditional stochastic programs which are risk neutral in the sense that they consider optimization of expectation functionals. In this thesis we establish sample average approximation methods for two classes of non-traditional stochastic programs. The first class is that of stochastic min-max programs, i.e., min-max problems with expected value objectives, and the second class is that of expected value constrained stochastic programs. We specialize these SAA methods for risk-averse stochastic problems with a bi-criteria objective involving mean and mean absolute deviation, and those with constraints on conditional value-at-risk. For the proposed SAA methods, we prove that the results of the SAA problem converge exponentially fast to their counterparts for the true problem as the sample size increases. We also propose implementation schemes which return not only candidate solutions but also statistical upper and lower bound estimates on the optimal value of the true problem. We apply the proposed methods to solve portfolio selection and supply chain network design problems. Our computational results reflect good performance of the proposed SAA schemes. We also investigate the effect of various types of risk-averse stochastic programming models in controlling risk in these problems.Georgia Institute of Technology2008-02-07T18:37:22Z2008-02-07T18:37:22Z2007-08-17Dissertationhttp://hdl.handle.net/1853/19784 |
collection |
NDLTD |
sources |
NDLTD |
topic |
Expected value constrained program Mean absolute deviation Conditional value-at-risk Portfolio optimization Supply chain network design Stochastic min-max program Stochastic processes |
spellingShingle |
Expected value constrained program Mean absolute deviation Conditional value-at-risk Portfolio optimization Supply chain network design Stochastic min-max program Stochastic processes Wang, Wei Sample Average Approximation of Risk-Averse Stochastic Programs |
description |
Sample average approximation (SAA) is a well-known solution methodology for traditional stochastic programs which are risk neutral in the sense that they consider optimization of expectation functionals. In this thesis we establish sample average approximation methods for two classes of non-traditional stochastic programs. The first class is that of stochastic min-max programs, i.e., min-max problems with expected value objectives, and the second class is that of expected value constrained stochastic programs. We specialize these SAA methods for risk-averse stochastic problems with a bi-criteria objective involving mean and mean absolute deviation, and those with constraints on conditional value-at-risk. For the proposed SAA methods, we prove that the results of the SAA problem converge exponentially fast to their counterparts for the true problem as the sample size increases. We also propose implementation schemes which return not only candidate solutions but also statistical upper and lower bound estimates on the optimal value of the true problem. We apply the proposed methods to solve portfolio selection and supply chain network design problems. Our computational results reflect good performance of the proposed SAA schemes. We also investigate the effect of various types of risk-averse stochastic programming models in controlling risk in these problems. |
author |
Wang, Wei |
author_facet |
Wang, Wei |
author_sort |
Wang, Wei |
title |
Sample Average Approximation of Risk-Averse Stochastic Programs |
title_short |
Sample Average Approximation of Risk-Averse Stochastic Programs |
title_full |
Sample Average Approximation of Risk-Averse Stochastic Programs |
title_fullStr |
Sample Average Approximation of Risk-Averse Stochastic Programs |
title_full_unstemmed |
Sample Average Approximation of Risk-Averse Stochastic Programs |
title_sort |
sample average approximation of risk-averse stochastic programs |
publisher |
Georgia Institute of Technology |
publishDate |
2008 |
url |
http://hdl.handle.net/1853/19784 |
work_keys_str_mv |
AT wangwei sampleaverageapproximationofriskaversestochasticprograms |
_version_ |
1716474768695230464 |