Multilevel acceleration of neutron transport calculations
Nuclear reactor design requires the calculation of integral core parameters and power and radiation profiles. These physical parameters are obtained by the solution of the linear neutron transport equation over the geometry of the reactor. In order to represent the fine structure of the nuclear core...
Main Author: | |
---|---|
Published: |
Georgia Institute of Technology
2008
|
Subjects: | |
Online Access: | http://hdl.handle.net/1853/19731 |
id |
ndltd-GATECH-oai-smartech.gatech.edu-1853-19731 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-GATECH-oai-smartech.gatech.edu-1853-197312013-01-07T20:23:55ZMultilevel acceleration of neutron transport calculationsMarquez Damian, Jose IgnacioMultilevelMultigridTransportReactorGaussSeidelJacobiInterpolationRestrictionSpherical harmonicsFinite elementFinite elementsEventNuclear reactorsMultigrid methods (Numerical analysis)Spherical harmonicsTransport theoryRadiative transferNuclear reactor design requires the calculation of integral core parameters and power and radiation profiles. These physical parameters are obtained by the solution of the linear neutron transport equation over the geometry of the reactor. In order to represent the fine structure of the nuclear core a very small geometrical mesh size should be used, but the computational capacity available these days is still not enough to solve these transport problems in the time range (hours-days) that would make the method useful as a design tool. This problem is traditionally solved by the solution of simple, smaller problems in specific parts of the core and then use a procedure known as homogenization to create average material properties and solve the full problem with a wider mesh size. The iterative multi-level solution procedure is inspired in this multi-stage approach, solving the problem at fuel-pin (cell) level, fuel assembly and nodal levels. The nested geometrical structure of the finite element representation of a reactor can be used to create a set of restriction/prolongation operators to connect the solution in the different levels. The procedure is to iterate between the levels, solving for the error in the coarse level using as source the restricted residual of the solution in the finer level. This way, the complete problem is only solved in the coarsest level and in the other levels only a pair of restriction/interpolation operations and a relaxation is required. In this work, a multigrid solver is developed for the in-moment equation of the spherical harmonics, finite element formulation of the second order transport equation. This solver is implemented as a subroutine in the code EVENT. Numerical tests are provided as a standalone diffusion solver and as part of a block Jacobi transport solver.Georgia Institute of Technology2008-02-07T18:13:47Z2008-02-07T18:13:47Z2007-08-24Thesishttp://hdl.handle.net/1853/19731 |
collection |
NDLTD |
sources |
NDLTD |
topic |
Multilevel Multigrid Transport Reactor Gauss Seidel Jacobi Interpolation Restriction Spherical harmonics Finite element Finite elements Event Nuclear reactors Multigrid methods (Numerical analysis) Spherical harmonics Transport theory Radiative transfer |
spellingShingle |
Multilevel Multigrid Transport Reactor Gauss Seidel Jacobi Interpolation Restriction Spherical harmonics Finite element Finite elements Event Nuclear reactors Multigrid methods (Numerical analysis) Spherical harmonics Transport theory Radiative transfer Marquez Damian, Jose Ignacio Multilevel acceleration of neutron transport calculations |
description |
Nuclear reactor design requires the calculation of integral core parameters and power and radiation profiles. These physical parameters are obtained by the solution of the linear neutron transport equation over the geometry of the reactor. In order to represent the fine structure of the nuclear core a very small geometrical mesh size should be used, but the computational capacity available these days is still not enough to solve these transport problems in the time range (hours-days) that would make the method useful as
a design tool. This problem is traditionally solved by the solution of simple, smaller problems
in specific parts of the core and then use a procedure known as homogenization to create average material properties and solve the full problem with a wider mesh size. The iterative multi-level solution procedure is inspired in this multi-stage approach, solving the problem at fuel-pin (cell) level, fuel assembly and nodal levels. The nested geometrical structure of the finite element representation of a reactor can be used to create a set of restriction/prolongation operators to connect the solution in the different levels. The procedure is to iterate between the levels, solving for the error in the coarse level using as source the restricted residual of the solution in the finer level. This way, the complete problem is only solved in the coarsest level and in the other levels only a pair of restriction/interpolation operations and a relaxation is required.
In this work, a multigrid solver is developed for the in-moment equation of the spherical harmonics, finite element formulation of the second order transport equation. This solver is implemented as a subroutine in the code EVENT. Numerical tests are provided as a standalone diffusion solver and as part of a block Jacobi transport solver. |
author |
Marquez Damian, Jose Ignacio |
author_facet |
Marquez Damian, Jose Ignacio |
author_sort |
Marquez Damian, Jose Ignacio |
title |
Multilevel acceleration of neutron transport calculations |
title_short |
Multilevel acceleration of neutron transport calculations |
title_full |
Multilevel acceleration of neutron transport calculations |
title_fullStr |
Multilevel acceleration of neutron transport calculations |
title_full_unstemmed |
Multilevel acceleration of neutron transport calculations |
title_sort |
multilevel acceleration of neutron transport calculations |
publisher |
Georgia Institute of Technology |
publishDate |
2008 |
url |
http://hdl.handle.net/1853/19731 |
work_keys_str_mv |
AT marquezdamianjoseignacio multilevelaccelerationofneutrontransportcalculations |
_version_ |
1716474750973247488 |