Utilizing Visual Attention and Inclination to Facilitate Brain-Computer Interface Design in an Amyotrophic Lateral Sclerosis Sample
Individuals who suffer from amyotrophic lateral sclerosis (ALS) have a loss of motor control and possibly the loss of speech. A brain-computer interface (BCI) provides a means for communication through nonmuscular control. Visual BCIs have shown the highest potential when compared to other modalitie...
Main Author: | |
---|---|
Format: | Others |
Published: |
Digital Commons @ East Tennessee State University
2014
|
Subjects: | |
Online Access: | https://dc.etsu.edu/etd/2461 https://dc.etsu.edu/cgi/viewcontent.cgi?article=3831&context=etd |
Summary: | Individuals who suffer from amyotrophic lateral sclerosis (ALS) have a loss of motor control and possibly the loss of speech. A brain-computer interface (BCI) provides a means for communication through nonmuscular control. Visual BCIs have shown the highest potential when compared to other modalities; nonetheless, visual attention concepts are largely ignored during the development of BCI paradigms. Additionally, individual performance differences and personal preference are not considered in paradigm development. The traditional method to discover the best paradigm for the individual user is trial and error. Visual attention research and personal preference provide the building blocks and guidelines to develop a successful paradigm. This study is an examination of a BCI-based visual attention assessment in an ALS sample. This assessment takes into account the individual’s visual attention characteristics, performance, and personal preference to select a paradigm. The resulting paradigm is optimized to the individual and then tested online against the traditional row-column paradigm. The optimal paradigm had superior performance and preference scores over row-column. These results show that the BCI needs to be calibrated to individual differences in order to obtain the best paradigm for an end user. |
---|