Escaping the Arrhenius Tyranny: Metabolic Compensation during exposure to high temperature in Daphnia
Poikilothermic organisms experience trade-offs associated with life at different temperatures caused by incompatible physiological and biochemical demands caused by temperature extremes. As the result many such organisms exhibit acclamatory effects, adjusting their metabolism and physiology to recen...
Main Authors: | , |
---|---|
Format: | Others |
Published: |
Digital Commons @ East Tennessee State University
2018
|
Subjects: | |
Online Access: | https://dc.etsu.edu/asrf/2018/schedule/108 |
id |
ndltd-ETSU-oai-dc.etsu.edu-asrf-1080 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-ETSU-oai-dc.etsu.edu-asrf-10802019-05-16T05:13:09Z Escaping the Arrhenius Tyranny: Metabolic Compensation during exposure to high temperature in Daphnia Coggins, Bret L Yampolsky, Lev Y Poikilothermic organisms experience trade-offs associated with life at different temperatures caused by incompatible physiological and biochemical demands caused by temperature extremes. As the result many such organisms exhibit acclamatory effects, adjusting their metabolism and physiology to recently experiences temperatures. One such acclamatory effect is the metabolic compensation that allows an organism to withstand increases in temperature by decelerating biological rates below Arrhenius expectations, presumably reducing energetic demand and reducing stress. Daphnia magna is resilient across a wide temperature range, and if acclimated to mildly stressful temperatures first, exhibits longer survival in lethal temperatures. Certain genotypes of Daphnia also exhibit higher acute thermal tolerance than others, indicating the presence of genetic variation and local adaptation in heat tolerance. This study examined the effect of ambient temperature (5°C-37°C) and acclimation history (2 generations at 10°C or 25°C) on the oxygen consumption rates of 8 genotypes of Daphnia (4 with high acute temperature tolerance, and 4 low). There are nonlinear decelerations of Daphnia respiratory rates across a temperature gradient when acclimated to 25°C or following short 8-hour acclimation to measurement temperatures. Furthermore, Daphnia exposed to a near-lethal temperature (35°C) with a subsequent 24-hour recovery period at their native 25°C-acclimation temperature shows no indication of respiratory damage. Genotype showed no difference in metabolic compensation, indicating the process is genetically constrained. Regulation of mitochondrial and membrane function are promising areas to further characterize the mechanism of metabolic compensation found in this study. 2018-04-04T21:40:00Z text application/pdf https://dc.etsu.edu/asrf/2018/schedule/108 Appalachian Student Research Forum Digital Commons @ East Tennessee State University Daphnia magna metabolic compensation temperature tolerance phenotypic plasticity respirometry Other Ecology and Evolutionary Biology Other Physiology |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
Daphnia magna metabolic compensation temperature tolerance phenotypic plasticity respirometry Other Ecology and Evolutionary Biology Other Physiology |
spellingShingle |
Daphnia magna metabolic compensation temperature tolerance phenotypic plasticity respirometry Other Ecology and Evolutionary Biology Other Physiology Coggins, Bret L Yampolsky, Lev Y Escaping the Arrhenius Tyranny: Metabolic Compensation during exposure to high temperature in Daphnia |
description |
Poikilothermic organisms experience trade-offs associated with life at different temperatures caused by incompatible physiological and biochemical demands caused by temperature extremes. As the result many such organisms exhibit acclamatory effects, adjusting their metabolism and physiology to recently experiences temperatures. One such acclamatory effect is the metabolic compensation that allows an organism to withstand increases in temperature by decelerating biological rates below Arrhenius expectations, presumably reducing energetic demand and reducing stress. Daphnia magna is resilient across a wide temperature range, and if acclimated to mildly stressful temperatures first, exhibits longer survival in lethal temperatures. Certain genotypes of Daphnia also exhibit higher acute thermal tolerance than others, indicating the presence of genetic variation and local adaptation in heat tolerance. This study examined the effect of ambient temperature (5°C-37°C) and acclimation history (2 generations at 10°C or 25°C) on the oxygen consumption rates of 8 genotypes of Daphnia (4 with high acute temperature tolerance, and 4 low). There are nonlinear decelerations of Daphnia respiratory rates across a temperature gradient when acclimated to 25°C or following short 8-hour acclimation to measurement temperatures. Furthermore, Daphnia exposed to a near-lethal temperature (35°C) with a subsequent 24-hour recovery period at their native 25°C-acclimation temperature shows no indication of respiratory damage. Genotype showed no difference in metabolic compensation, indicating the process is genetically constrained. Regulation of mitochondrial and membrane function are promising areas to further characterize the mechanism of metabolic compensation found in this study. |
author |
Coggins, Bret L Yampolsky, Lev Y |
author_facet |
Coggins, Bret L Yampolsky, Lev Y |
author_sort |
Coggins, Bret L |
title |
Escaping the Arrhenius Tyranny: Metabolic Compensation during exposure to high temperature in Daphnia |
title_short |
Escaping the Arrhenius Tyranny: Metabolic Compensation during exposure to high temperature in Daphnia |
title_full |
Escaping the Arrhenius Tyranny: Metabolic Compensation during exposure to high temperature in Daphnia |
title_fullStr |
Escaping the Arrhenius Tyranny: Metabolic Compensation during exposure to high temperature in Daphnia |
title_full_unstemmed |
Escaping the Arrhenius Tyranny: Metabolic Compensation during exposure to high temperature in Daphnia |
title_sort |
escaping the arrhenius tyranny: metabolic compensation during exposure to high temperature in daphnia |
publisher |
Digital Commons @ East Tennessee State University |
publishDate |
2018 |
url |
https://dc.etsu.edu/asrf/2018/schedule/108 |
work_keys_str_mv |
AT cogginsbretl escapingthearrheniustyrannymetaboliccompensationduringexposuretohightemperatureindaphnia AT yampolskylevy escapingthearrheniustyrannymetaboliccompensationduringexposuretohightemperatureindaphnia |
_version_ |
1719189571890053120 |