Optical Precursor Behavior

Controlling and understanding the propagation of optical pulses through dispersive media forms the basis for optical communication, medical imaging, and other modern technological advances. Integral to this control and understanding is the ability to describe the transients which occur immediately a...

Full description

Bibliographic Details
Main Author: LeFew, William R.
Other Authors: Venakides, Stephanos
Format: Others
Language:en_US
Published: 2007
Subjects:
Online Access:http://hdl.handle.net/10161/195
id ndltd-DUKE-oai-dukespace.lib.duke.edu-10161-195
record_format oai_dc
spelling ndltd-DUKE-oai-dukespace.lib.duke.edu-10161-1952013-01-07T20:07:03ZOptical Precursor BehaviorLeFew, William R.Maxwell equationsMathematicsControlling and understanding the propagation of optical pulses through dispersive media forms the basis for optical communication, medical imaging, and other modern technological advances. Integral to this control and understanding is the ability to describe the transients which occur immediately after the onset of a signal. This thesis examines the transients of such a system when a unit step function is applied. The electromagnetic field is described by an integral resulting from Maxwell’s Equations. It was previously believed that optical precursors, a specific transient effect, existed only for only a few optical cycles and contributed only small magnitudes to the field. The main results of this thesis show that the transients arising from this integral are entirely precursors and that they may exist on longer time scales and contribute larger magnitudes to the field. The experimental detection of precursors has previously been recognized only through success comparison to the transient field resulting from an application of the method of steepest descent to that field integral. For any parameter regime where steepest descents may be applied, this work gives iterative methods to determine saddle points which are both more accurate than the accepted results and to extend into regimes where the current theory has failed. Furthermore, asymptotic formulae have been derived for regions where previous attempts at steepest descent have failed. Theory is also presented which evaluates the applicability of steepest descents in the represention of precursor behavior for any set of parameters. Lastly, the existence of other theoretical models for precursor behavior who may operate beyond the reach of steepest descent is validated through successful comparisons of the transient prediction of those methods to the steepest descent based results of this work.DissertationVenakides, StephanosTrangenstein, JohnMattingly, JonathanWitelski, Thomas P.20072007-05-07T19:07:14ZDissertation3692376 bytesapplication/pdfhttp://hdl.handle.net/10161/195en_US
collection NDLTD
language en_US
format Others
sources NDLTD
topic Maxwell equations
Mathematics
spellingShingle Maxwell equations
Mathematics
LeFew, William R.
Optical Precursor Behavior
description Controlling and understanding the propagation of optical pulses through dispersive media forms the basis for optical communication, medical imaging, and other modern technological advances. Integral to this control and understanding is the ability to describe the transients which occur immediately after the onset of a signal. This thesis examines the transients of such a system when a unit step function is applied. The electromagnetic field is described by an integral resulting from Maxwell’s Equations. It was previously believed that optical precursors, a specific transient effect, existed only for only a few optical cycles and contributed only small magnitudes to the field. The main results of this thesis show that the transients arising from this integral are entirely precursors and that they may exist on longer time scales and contribute larger magnitudes to the field. The experimental detection of precursors has previously been recognized only through success comparison to the transient field resulting from an application of the method of steepest descent to that field integral. For any parameter regime where steepest descents may be applied, this work gives iterative methods to determine saddle points which are both more accurate than the accepted results and to extend into regimes where the current theory has failed. Furthermore, asymptotic formulae have been derived for regions where previous attempts at steepest descent have failed. Theory is also presented which evaluates the applicability of steepest descents in the represention of precursor behavior for any set of parameters. Lastly, the existence of other theoretical models for precursor behavior who may operate beyond the reach of steepest descent is validated through successful comparisons of the transient prediction of those methods to the steepest descent based results of this work. === Dissertation
author2 Venakides, Stephanos
author_facet Venakides, Stephanos
LeFew, William R.
author LeFew, William R.
author_sort LeFew, William R.
title Optical Precursor Behavior
title_short Optical Precursor Behavior
title_full Optical Precursor Behavior
title_fullStr Optical Precursor Behavior
title_full_unstemmed Optical Precursor Behavior
title_sort optical precursor behavior
publishDate 2007
url http://hdl.handle.net/10161/195
work_keys_str_mv AT lefewwilliamr opticalprecursorbehavior
_version_ 1716473322923884544