Effects of different perturbative methods of the system-bath coupling on the reduced system dynamics

Diese Dissertation befasst sich mit der numerischen Behandlung dissipativer quantenmechanischer Prozesse im Rahmen der reduzierten Dichtematrix-Theorie. Zunächst werden Elektronen-Transferprozesse mit Hilfe einer hierarchischen Methode zur Lösung der Bewegungsgleichung der System-Dichtematrix unters...

Full description

Bibliographic Details
Main Author: Schröder, Markus
Other Authors: TU Chemnitz, Fakultät für Naturwissenschaften
Format: Doctoral Thesis
Language:English
Published: Universitätsbibliothek Chemnitz 2007
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:swb:ch1-200700078
http://nbn-resolving.de/urn:nbn:de:swb:ch1-200700078
http://www.qucosa.de/fileadmin/data/qucosa/documents/5327/data/thesis.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/5327/20070007.txt
Description
Summary:Diese Dissertation befasst sich mit der numerischen Behandlung dissipativer quantenmechanischer Prozesse im Rahmen der reduzierten Dichtematrix-Theorie. Zunächst werden Elektronen-Transferprozesse mit Hilfe einer hierarchischen Methode zur Lösung der Bewegungsgleichung der System-Dichtematrix untersucht. Hier liegt der Fokus auf der Untersuchung des Konvergenzverhaltens der Hierarchie mit der Anzahl der berücksichtigten Ebenen bei unterschiedlichen Abbruchverfahren. Es wird gezeigt, dass die Konvergenz stark von der Abbruchmethode und der Observablen abhängt. Weiterhin wird das lineare Absorptionsspektrum des B850 Pigment-Rings von Rhodispirillum molischianum mit verschiedenen Methoden zur Berücksichtigung der Effekte eines angekoppelten Bades berechnet. Diese Methoden basieren auf störungstheoretischen Ansätzen in der System-Bad-Kopplung. Es gelang unter Verwendung der modifizierten Redfield Theorie (MRT) einen Ausdruck für das Absorptionsspektrum herzuleiten. Bei der MRT werden Teile der System-Bad-Wechselwirkung exakt behandelt. Diese Methode wird in zwei Varianten diskutiert und anderen Methoden gegenübergestellt. Modellrechnungen werden für verschiedene Spektraldichten angefertigt, darunter eine, die aus einer Molekulardynamik(MD)- Simulation stammt. Ebenso wird der Einfluss statischer Unordnung der Pigment-Energien auf die Form des Absorptionsspektrums diskutiert. Dazu werden Spektren sowohl einer einzelnen Realisierung als auch des Ensembles dargestellt. Im Falle der Spektraldichte aus der MD-Simulation werden die Ensemble-Spektren zusätzlich mit experimentellen Daten verglichen. Weiterhin wird eine Rechnung mit der Hierarchie zum Spektrum des B850 Rings und weitere zur Populationsdynamik eines kleineren Systems diskutiert und mit Ergebnissen aus der MRT verglichen. Außerdem wird eine Methode zur stochastischen Propagation von mehrdimensionalen Wellenfunktionen entwickelt. Mit Hilfe von Sprung- Prozessen gelingt es die Freiheitsgrade des Systems zu entkoppeln, sodass mehrere eindimensionale Wellenfunktionen stochastisch propagiert werden können. Die exakte Wellenfunktion kann so als Ensemblemittel von Produkten eindimensionaler stochastischer Wellenfunktionen beschrieben werden.