The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes

Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the...

Full description

Bibliographic Details
Main Author: Grosman, Serguei
Other Authors: TU Chemnitz, SFB 393
Format: Others
Language:English
Published: Universitätsbibliothek Chemnitz 2006
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601418
http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601418
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/index.html
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/.htaccess
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/SFBcov.png
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/pdf.gif
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/pre.css
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/ps.gif
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/sfb04-02.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/sfb04-02.ps.gz
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/20060141.txt
id ndltd-DRESDEN-oai-qucosa.de-swb-ch1-200601418
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-swb-ch1-2006014182013-01-07T19:56:49Z The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes Grosman, Serguei singular perturbations stretched elements ddc:510 A-posteriori-Abschätzung Finite-Elemente-Methode Robuste Schätzung Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both the perturbation parameters of the problem and the anisotropy of the mesh. The simplest local error estimator from the implementation point of view is the so-called hierarchical error estimator. The reliability proof is usually based on two prerequisites: the saturation assumption and the strengthened Cauchy-Schwarz inequality. The proofs of these facts are extended in the present work for the case of the singularly perturbed reaction-diffusion equation and of the meshes with anisotropic elements. It is shown that the constants in the corresponding estimates do neither depend on the aspect ratio of the elements, nor on the perturbation parameters. Utilizing the above arguments the concluding reliability proof is provided as well as the efficiency proof of the estimator, both independent of the aspect ratio and perturbation parameters. Universitätsbibliothek Chemnitz TU Chemnitz, SFB 393 2006-09-01 doc-type:preprint text/html text/plain image/png image/gif text/plain image/gif application/pdf application/x-gzip text/plain application/zip http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601418 urn:nbn:de:swb:ch1-200601418 issn:1619-7186 http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/index.html http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/.htaccess http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/SFBcov.png http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/pdf.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/pre.css http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/ps.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/sfb04-02.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/sfb04-02.ps.gz http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/20060141.txt Preprintreihe des Chemnitzer SFB 393, 04-02 eng
collection NDLTD
language English
format Others
sources NDLTD
topic singular perturbations
stretched elements
ddc:510
A-posteriori-Abschätzung
Finite-Elemente-Methode
Robuste Schätzung
spellingShingle singular perturbations
stretched elements
ddc:510
A-posteriori-Abschätzung
Finite-Elemente-Methode
Robuste Schätzung
Grosman, Serguei
The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes
description Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both the perturbation parameters of the problem and the anisotropy of the mesh. The simplest local error estimator from the implementation point of view is the so-called hierarchical error estimator. The reliability proof is usually based on two prerequisites: the saturation assumption and the strengthened Cauchy-Schwarz inequality. The proofs of these facts are extended in the present work for the case of the singularly perturbed reaction-diffusion equation and of the meshes with anisotropic elements. It is shown that the constants in the corresponding estimates do neither depend on the aspect ratio of the elements, nor on the perturbation parameters. Utilizing the above arguments the concluding reliability proof is provided as well as the efficiency proof of the estimator, both independent of the aspect ratio and perturbation parameters.
author2 TU Chemnitz, SFB 393
author_facet TU Chemnitz, SFB 393
Grosman, Serguei
author Grosman, Serguei
author_sort Grosman, Serguei
title The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes
title_short The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes
title_full The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes
title_fullStr The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes
title_full_unstemmed The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes
title_sort robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes
publisher Universitätsbibliothek Chemnitz
publishDate 2006
url http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601418
http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601418
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/index.html
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/.htaccess
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/SFBcov.png
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/pdf.gif
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/pre.css
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/ps.gif
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/sfb04-02.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/sfb04-02.ps.gz
http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/20060141.txt
work_keys_str_mv AT grosmanserguei therobustnessofthehierarchicalaposteriorierrorestimatorforreactiondiffusionequationonanisotropicmeshes
AT grosmanserguei robustnessofthehierarchicalaposteriorierrorestimatorforreactiondiffusionequationonanisotropicmeshes
_version_ 1716472175885549568