The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes
Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the...
id |
ndltd-DRESDEN-oai-qucosa.de-swb-ch1-200601418 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-DRESDEN-oai-qucosa.de-swb-ch1-2006014182013-01-07T19:56:49Z The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes Grosman, Serguei singular perturbations stretched elements ddc:510 A-posteriori-Abschätzung Finite-Elemente-Methode Robuste Schätzung Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both the perturbation parameters of the problem and the anisotropy of the mesh. The simplest local error estimator from the implementation point of view is the so-called hierarchical error estimator. The reliability proof is usually based on two prerequisites: the saturation assumption and the strengthened Cauchy-Schwarz inequality. The proofs of these facts are extended in the present work for the case of the singularly perturbed reaction-diffusion equation and of the meshes with anisotropic elements. It is shown that the constants in the corresponding estimates do neither depend on the aspect ratio of the elements, nor on the perturbation parameters. Utilizing the above arguments the concluding reliability proof is provided as well as the efficiency proof of the estimator, both independent of the aspect ratio and perturbation parameters. Universitätsbibliothek Chemnitz TU Chemnitz, SFB 393 2006-09-01 doc-type:preprint text/html text/plain image/png image/gif text/plain image/gif application/pdf application/x-gzip text/plain application/zip http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601418 urn:nbn:de:swb:ch1-200601418 issn:1619-7186 http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/index.html http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/.htaccess http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/SFBcov.png http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/pdf.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/pre.css http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/ps.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/sfb04-02.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/sfb04-02.ps.gz http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/20060141.txt Preprintreihe des Chemnitzer SFB 393, 04-02 eng |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
singular perturbations stretched elements ddc:510 A-posteriori-Abschätzung Finite-Elemente-Methode Robuste Schätzung |
spellingShingle |
singular perturbations stretched elements ddc:510 A-posteriori-Abschätzung Finite-Elemente-Methode Robuste Schätzung Grosman, Serguei The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes |
description |
Singularly perturbed reaction-diffusion problems
exhibit in general solutions with anisotropic
features, e.g. strong boundary and/or interior
layers. This anisotropy is reflected in the
discretization by using meshes with anisotropic
elements. The quality of the numerical solution
rests on the robustness of the a posteriori error
estimator with respect to both the perturbation
parameters of the problem and the anisotropy of the
mesh. The simplest local error estimator from the
implementation point of view is the so-called
hierarchical error estimator. The reliability
proof is usually based on two prerequisites:
the saturation assumption and the strengthened
Cauchy-Schwarz inequality. The proofs of these
facts are extended in the present work for the
case of the singularly perturbed reaction-diffusion
equation and of the meshes with anisotropic elements.
It is shown that the constants in the corresponding
estimates do neither depend on the aspect ratio
of the elements, nor on the perturbation parameters.
Utilizing the above arguments the concluding
reliability proof is provided as well as the
efficiency proof of the estimator, both
independent of the aspect ratio and perturbation
parameters. |
author2 |
TU Chemnitz, SFB 393 |
author_facet |
TU Chemnitz, SFB 393 Grosman, Serguei |
author |
Grosman, Serguei |
author_sort |
Grosman, Serguei |
title |
The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes |
title_short |
The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes |
title_full |
The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes |
title_fullStr |
The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes |
title_full_unstemmed |
The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes |
title_sort |
robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes |
publisher |
Universitätsbibliothek Chemnitz |
publishDate |
2006 |
url |
http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601418 http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601418 http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/index.html http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/.htaccess http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/SFBcov.png http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/pdf.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/pre.css http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/ps.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/sfb04-02.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/data/sfb04-02.ps.gz http://www.qucosa.de/fileadmin/data/qucosa/documents/5254/20060141.txt |
work_keys_str_mv |
AT grosmanserguei therobustnessofthehierarchicalaposteriorierrorestimatorforreactiondiffusionequationonanisotropicmeshes AT grosmanserguei robustnessofthehierarchicalaposteriorierrorestimatorforreactiondiffusionequationonanisotropicmeshes |
_version_ |
1716472175885549568 |