id ndltd-DRESDEN-oai-qucosa.de-swb-ch1-200601352
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-swb-ch1-2006013522018-02-07T03:24:22Z A posteriori error estimation for a finite volume discretization on anisotropic meshes Kunert, Gerd Mghazli, Zoubida Nicaise, Serge error bounds singular perturbations ddc:510 Anisotropie Fehlerabschätzung Finite-Volumen-Methode A singularly perturbed reaction diffusion problem is considered. The small diffusion coefficient generically leads to solutions with boundary layers. The problem is discretized by a vertex-centered finite volume method. The anisotropy of the solution is reflected by using \emph{anisotropic meshes} which can improve the accuracy of the discretization considerably. The main focus is on \emph{a posteriori} error estimation. A residual type error estimator is proposed and rigorously analysed. It is shown to be robust with respect to the small perturbation parameter. The estimator is also robust with respect to the mesh anisotropy as long as the anisotropic mesh sufficiently reflects the anisotropy of the solution (which is almost always the case for sensible discretizations). Altogether, reliable and efficient \emph{a posteriori} error estimation is achieved for the finite volume method on anisotropic meshes. Universitätsbibliothek Chemnitz TU Chemnitz, SFB 393 2006-08-31 doc-type:preprint text/html text/plain image/png image/gif text/plain image/gif application/pdf application/x-gzip text/plain application/zip http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601352 urn:nbn:de:swb:ch1-200601352 issn:1619-7186 http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/index.html http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/.htaccess http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/SFBcov.png http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/pdf.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/pre.css http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/ps.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/sfb03-16.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/sfb03-16.ps.gz http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/20060135.txt Preprintreihe des Chemnitzer SFB 393, 03-16 eng
collection NDLTD
language English
format Others
sources NDLTD
topic error bounds
singular perturbations
ddc:510
Anisotropie
Fehlerabschätzung
Finite-Volumen-Methode
spellingShingle error bounds
singular perturbations
ddc:510
Anisotropie
Fehlerabschätzung
Finite-Volumen-Methode
Kunert, Gerd
Mghazli, Zoubida
Nicaise, Serge
A posteriori error estimation for a finite volume discretization on anisotropic meshes
description A singularly perturbed reaction diffusion problem is considered. The small diffusion coefficient generically leads to solutions with boundary layers. The problem is discretized by a vertex-centered finite volume method. The anisotropy of the solution is reflected by using \emph{anisotropic meshes} which can improve the accuracy of the discretization considerably. The main focus is on \emph{a posteriori} error estimation. A residual type error estimator is proposed and rigorously analysed. It is shown to be robust with respect to the small perturbation parameter. The estimator is also robust with respect to the mesh anisotropy as long as the anisotropic mesh sufficiently reflects the anisotropy of the solution (which is almost always the case for sensible discretizations). Altogether, reliable and efficient \emph{a posteriori} error estimation is achieved for the finite volume method on anisotropic meshes.
author2 TU Chemnitz, SFB 393
author_facet TU Chemnitz, SFB 393
Kunert, Gerd
Mghazli, Zoubida
Nicaise, Serge
author Kunert, Gerd
Mghazli, Zoubida
Nicaise, Serge
author_sort Kunert, Gerd
title A posteriori error estimation for a finite volume discretization on anisotropic meshes
title_short A posteriori error estimation for a finite volume discretization on anisotropic meshes
title_full A posteriori error estimation for a finite volume discretization on anisotropic meshes
title_fullStr A posteriori error estimation for a finite volume discretization on anisotropic meshes
title_full_unstemmed A posteriori error estimation for a finite volume discretization on anisotropic meshes
title_sort posteriori error estimation for a finite volume discretization on anisotropic meshes
publisher Universitätsbibliothek Chemnitz
publishDate 2006
url http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601352
http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601352
http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/index.html
http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/.htaccess
http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/SFBcov.png
http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/pdf.gif
http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/pre.css
http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/ps.gif
http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/sfb03-16.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/sfb03-16.ps.gz
http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/20060135.txt
work_keys_str_mv AT kunertgerd aposteriorierrorestimationforafinitevolumediscretizationonanisotropicmeshes
AT mghazlizoubida aposteriorierrorestimationforafinitevolumediscretizationonanisotropicmeshes
AT nicaiseserge aposteriorierrorestimationforafinitevolumediscretizationonanisotropicmeshes
AT kunertgerd posteriorierrorestimationforafinitevolumediscretizationonanisotropicmeshes
AT mghazlizoubida posteriorierrorestimationforafinitevolumediscretizationonanisotropicmeshes
AT nicaiseserge posteriorierrorestimationforafinitevolumediscretizationonanisotropicmeshes
_version_ 1718613350579961856