A posteriori error estimation for a finite volume discretization on anisotropic meshes
A singularly perturbed reaction diffusion problem is considered. The small diffusion coefficient generically leads to solutions with boundary layers. The problem is discretized by a vertex-centered finite volume method. The anisotropy of the solution is reflected by using \emph{anisotropic meshes} w...
id |
ndltd-DRESDEN-oai-qucosa.de-swb-ch1-200601352 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-DRESDEN-oai-qucosa.de-swb-ch1-2006013522018-02-07T03:24:22Z A posteriori error estimation for a finite volume discretization on anisotropic meshes Kunert, Gerd Mghazli, Zoubida Nicaise, Serge error bounds singular perturbations ddc:510 Anisotropie Fehlerabschätzung Finite-Volumen-Methode A singularly perturbed reaction diffusion problem is considered. The small diffusion coefficient generically leads to solutions with boundary layers. The problem is discretized by a vertex-centered finite volume method. The anisotropy of the solution is reflected by using \emph{anisotropic meshes} which can improve the accuracy of the discretization considerably. The main focus is on \emph{a posteriori} error estimation. A residual type error estimator is proposed and rigorously analysed. It is shown to be robust with respect to the small perturbation parameter. The estimator is also robust with respect to the mesh anisotropy as long as the anisotropic mesh sufficiently reflects the anisotropy of the solution (which is almost always the case for sensible discretizations). Altogether, reliable and efficient \emph{a posteriori} error estimation is achieved for the finite volume method on anisotropic meshes. Universitätsbibliothek Chemnitz TU Chemnitz, SFB 393 2006-08-31 doc-type:preprint text/html text/plain image/png image/gif text/plain image/gif application/pdf application/x-gzip text/plain application/zip http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601352 urn:nbn:de:swb:ch1-200601352 issn:1619-7186 http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/index.html http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/.htaccess http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/SFBcov.png http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/pdf.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/pre.css http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/ps.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/sfb03-16.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/sfb03-16.ps.gz http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/20060135.txt Preprintreihe des Chemnitzer SFB 393, 03-16 eng |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
error bounds singular perturbations ddc:510 Anisotropie Fehlerabschätzung Finite-Volumen-Methode |
spellingShingle |
error bounds singular perturbations ddc:510 Anisotropie Fehlerabschätzung Finite-Volumen-Methode Kunert, Gerd Mghazli, Zoubida Nicaise, Serge A posteriori error estimation for a finite volume discretization on anisotropic meshes |
description |
A singularly perturbed reaction diffusion problem is considered. The small diffusion coefficient generically leads to solutions with boundary layers. The problem is discretized by a vertex-centered finite volume method. The anisotropy of the solution is reflected by using \emph{anisotropic meshes} which can improve the accuracy of the discretization considerably. The main focus is on \emph{a posteriori} error estimation. A residual type error estimator is proposed and rigorously analysed. It is shown to be robust with respect to the small perturbation parameter. The estimator is also robust with respect to the mesh anisotropy as long as the anisotropic mesh sufficiently reflects the anisotropy of the solution (which is almost always the case for sensible discretizations). Altogether, reliable and efficient \emph{a posteriori} error estimation is achieved for the finite volume method on anisotropic meshes.
|
author2 |
TU Chemnitz, SFB 393 |
author_facet |
TU Chemnitz, SFB 393 Kunert, Gerd Mghazli, Zoubida Nicaise, Serge |
author |
Kunert, Gerd Mghazli, Zoubida Nicaise, Serge |
author_sort |
Kunert, Gerd |
title |
A posteriori error estimation for a finite volume discretization on anisotropic meshes |
title_short |
A posteriori error estimation for a finite volume discretization on anisotropic meshes |
title_full |
A posteriori error estimation for a finite volume discretization on anisotropic meshes |
title_fullStr |
A posteriori error estimation for a finite volume discretization on anisotropic meshes |
title_full_unstemmed |
A posteriori error estimation for a finite volume discretization on anisotropic meshes |
title_sort |
posteriori error estimation for a finite volume discretization on anisotropic meshes |
publisher |
Universitätsbibliothek Chemnitz |
publishDate |
2006 |
url |
http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601352 http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601352 http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/index.html http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/.htaccess http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/SFBcov.png http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/pdf.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/pre.css http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/ps.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/sfb03-16.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/data/sfb03-16.ps.gz http://www.qucosa.de/fileadmin/data/qucosa/documents/5248/20060135.txt |
work_keys_str_mv |
AT kunertgerd aposteriorierrorestimationforafinitevolumediscretizationonanisotropicmeshes AT mghazlizoubida aposteriorierrorestimationforafinitevolumediscretizationonanisotropicmeshes AT nicaiseserge aposteriorierrorestimationforafinitevolumediscretizationonanisotropicmeshes AT kunertgerd posteriorierrorestimationforafinitevolumediscretizationonanisotropicmeshes AT mghazlizoubida posteriorierrorestimationforafinitevolumediscretizationonanisotropicmeshes AT nicaiseserge posteriorierrorestimationforafinitevolumediscretizationonanisotropicmeshes |
_version_ |
1718613350579961856 |