Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes
Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robus...
id |
ndltd-DRESDEN-oai-qucosa.de-swb-ch1-200600475 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-DRESDEN-oai-qucosa.de-swb-ch1-2006004752018-02-07T03:24:22Z Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes Grosman, Serguei a posteriori error estimation singular perturbations stretched elements ddc:510 Anisotropie Finite-Elemente-Methode Reaktions-Diffusionsgleichung Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both the perturbation parameters of the problem and the anisotropy of the mesh. An estimator that has shown to be one of the most reliable for reaction-diffusion problem is the <i>equilibrated residual method</i> and its modification done by Ainsworth and Babuška for singularly perturbed problem. However, even the modified method is not robust in the case of anisotropic meshes. The present work modifies the equilibrated residual method for anisotropic meshes. The resulting error estimator is equivalent to the equilibrated residual method in the case of isotropic meshes and is proved to be robust on anisotropic meshes as well. A numerical example confirms the theory. Universitätsbibliothek Chemnitz TU Chemnitz, SFB 393 2006-04-05 doc-type:preprint text/html text/plain image/png image/gif text/plain image/gif application/pdf application/x-gzip text/plain application/zip http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600475 urn:nbn:de:swb:ch1-200600475 issn:1619-7186 http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/index.html http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/.htaccess http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/SFBcov.png http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/pdf.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/pre.css http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/ps.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/sfb02-07.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/sfb02-07.ps.gz http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/20060047.txt Preprintreihe des Chemnitzer SFB 393, 02-07 eng |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
a posteriori error estimation singular perturbations stretched elements ddc:510 Anisotropie Finite-Elemente-Methode Reaktions-Diffusionsgleichung |
spellingShingle |
a posteriori error estimation singular perturbations stretched elements ddc:510 Anisotropie Finite-Elemente-Methode Reaktions-Diffusionsgleichung Grosman, Serguei Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes |
description |
Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both the perturbation parameters of the problem and the anisotropy of the mesh. An estimator that has shown to be one of the most reliable for reaction-diffusion problem is the <i>equilibrated residual method</i> and its modification done by Ainsworth and Babuška for singularly perturbed problem. However, even the modified method is not robust in the case of anisotropic meshes. The present work modifies the equilibrated residual method for anisotropic meshes. The resulting error estimator is equivalent to the equilibrated residual method in the case of isotropic meshes and is proved to be robust on anisotropic meshes as well. A numerical example confirms the theory.
|
author2 |
TU Chemnitz, SFB 393 |
author_facet |
TU Chemnitz, SFB 393 Grosman, Serguei |
author |
Grosman, Serguei |
author_sort |
Grosman, Serguei |
title |
Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes |
title_short |
Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes |
title_full |
Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes |
title_fullStr |
Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes |
title_full_unstemmed |
Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes |
title_sort |
robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes |
publisher |
Universitätsbibliothek Chemnitz |
publishDate |
2006 |
url |
http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600475 http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600475 http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/index.html http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/.htaccess http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/SFBcov.png http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/pdf.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/pre.css http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/ps.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/sfb02-07.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/sfb02-07.ps.gz http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/20060047.txt |
work_keys_str_mv |
AT grosmanserguei robustlocalproblemerrorestimationforasingularlyperturbedreactiondiffusionproblemonanisotropicfiniteelementmeshes |
_version_ |
1718613344488783872 |