Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes

Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robus...

Full description

Bibliographic Details
Main Author: Grosman, Serguei
Other Authors: TU Chemnitz, SFB 393
Format: Others
Language:English
Published: Universitätsbibliothek Chemnitz 2006
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600475
http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600475
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/index.html
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/.htaccess
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/SFBcov.png
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/pdf.gif
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/pre.css
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/ps.gif
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/sfb02-07.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/sfb02-07.ps.gz
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/20060047.txt
id ndltd-DRESDEN-oai-qucosa.de-swb-ch1-200600475
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-swb-ch1-2006004752018-02-07T03:24:22Z Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes Grosman, Serguei a posteriori error estimation singular perturbations stretched elements ddc:510 Anisotropie Finite-Elemente-Methode Reaktions-Diffusionsgleichung Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both the perturbation parameters of the problem and the anisotropy of the mesh. An estimator that has shown to be one of the most reliable for reaction-diffusion problem is the <i>equilibrated residual method</i> and its modification done by Ainsworth and Babuška for singularly perturbed problem. However, even the modified method is not robust in the case of anisotropic meshes. The present work modifies the equilibrated residual method for anisotropic meshes. The resulting error estimator is equivalent to the equilibrated residual method in the case of isotropic meshes and is proved to be robust on anisotropic meshes as well. A numerical example confirms the theory. Universitätsbibliothek Chemnitz TU Chemnitz, SFB 393 2006-04-05 doc-type:preprint text/html text/plain image/png image/gif text/plain image/gif application/pdf application/x-gzip text/plain application/zip http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600475 urn:nbn:de:swb:ch1-200600475 issn:1619-7186 http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/index.html http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/.htaccess http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/SFBcov.png http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/pdf.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/pre.css http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/ps.gif http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/sfb02-07.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/sfb02-07.ps.gz http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/20060047.txt Preprintreihe des Chemnitzer SFB 393, 02-07 eng
collection NDLTD
language English
format Others
sources NDLTD
topic a posteriori error estimation
singular perturbations
stretched elements
ddc:510
Anisotropie
Finite-Elemente-Methode
Reaktions-Diffusionsgleichung
spellingShingle a posteriori error estimation
singular perturbations
stretched elements
ddc:510
Anisotropie
Finite-Elemente-Methode
Reaktions-Diffusionsgleichung
Grosman, Serguei
Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes
description Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both the perturbation parameters of the problem and the anisotropy of the mesh. An estimator that has shown to be one of the most reliable for reaction-diffusion problem is the <i>equilibrated residual method</i> and its modification done by Ainsworth and Babuška for singularly perturbed problem. However, even the modified method is not robust in the case of anisotropic meshes. The present work modifies the equilibrated residual method for anisotropic meshes. The resulting error estimator is equivalent to the equilibrated residual method in the case of isotropic meshes and is proved to be robust on anisotropic meshes as well. A numerical example confirms the theory.
author2 TU Chemnitz, SFB 393
author_facet TU Chemnitz, SFB 393
Grosman, Serguei
author Grosman, Serguei
author_sort Grosman, Serguei
title Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes
title_short Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes
title_full Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes
title_fullStr Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes
title_full_unstemmed Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes
title_sort robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes
publisher Universitätsbibliothek Chemnitz
publishDate 2006
url http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600475
http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600475
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/index.html
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/.htaccess
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/SFBcov.png
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/pdf.gif
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/pre.css
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/ps.gif
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/sfb02-07.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/data/sfb02-07.ps.gz
http://www.qucosa.de/fileadmin/data/qucosa/documents/5160/20060047.txt
work_keys_str_mv AT grosmanserguei robustlocalproblemerrorestimationforasingularlyperturbedreactiondiffusionproblemonanisotropicfiniteelementmeshes
_version_ 1718613344488783872