Optimal portfolios with bounded shortfall risks

This paper considers dynamic optimal portfolio strategies of utility maximizing investors in the presence of risk constraints. In particular, we investigate the optimization problem with an additional constraint modeling bounded shortfall risk measured by Value at Risk or Expected Loss. Using the Bl...

Full description

Bibliographic Details
Main Authors: Gabih, Abdelali, Wunderlich, Ralf
Other Authors: TU Chemnitz, Fakultät für Mathematik
Format: Others
Language:English
Published: Universitätsbibliothek Chemnitz 2004
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:swb:ch1-200401202
http://nbn-resolving.de/urn:nbn:de:swb:ch1-200401202
http://www.qucosa.de/fileadmin/data/qucosa/documents/4868/data/ga_wu_tagungsband_2003.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/4868/20040120.txt
id ndltd-DRESDEN-oai-qucosa.de-swb-ch1-200401202
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-swb-ch1-2004012022013-01-07T19:56:09Z Optimal portfolios with bounded shortfall risks Gabih, Abdelali Wunderlich, Ralf Black-Scholes model dynamic strategy martingale method optimal portfolio shortfall risk ddc:510 This paper considers dynamic optimal portfolio strategies of utility maximizing investors in the presence of risk constraints. In particular, we investigate the optimization problem with an additional constraint modeling bounded shortfall risk measured by Value at Risk or Expected Loss. Using the Black-Scholes model of a complete financial market and applying martingale methods we give analytic expressions for the optimal terminal wealth and the optimal portfolio strategies and present some numerical results. Universitätsbibliothek Chemnitz TU Chemnitz, Fakultät für Mathematik 2004-08-26 doc-type:lecture application/pdf text/plain application/zip http://nbn-resolving.de/urn:nbn:de:swb:ch1-200401202 urn:nbn:de:swb:ch1-200401202 http://www.qucosa.de/fileadmin/data/qucosa/documents/4868/data/ga_wu_tagungsband_2003.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/4868/20040120.txt eng
collection NDLTD
language English
format Others
sources NDLTD
topic Black-Scholes model
dynamic strategy
martingale method
optimal portfolio
shortfall risk
ddc:510
spellingShingle Black-Scholes model
dynamic strategy
martingale method
optimal portfolio
shortfall risk
ddc:510
Gabih, Abdelali
Wunderlich, Ralf
Optimal portfolios with bounded shortfall risks
description This paper considers dynamic optimal portfolio strategies of utility maximizing investors in the presence of risk constraints. In particular, we investigate the optimization problem with an additional constraint modeling bounded shortfall risk measured by Value at Risk or Expected Loss. Using the Black-Scholes model of a complete financial market and applying martingale methods we give analytic expressions for the optimal terminal wealth and the optimal portfolio strategies and present some numerical results.
author2 TU Chemnitz, Fakultät für Mathematik
author_facet TU Chemnitz, Fakultät für Mathematik
Gabih, Abdelali
Wunderlich, Ralf
author Gabih, Abdelali
Wunderlich, Ralf
author_sort Gabih, Abdelali
title Optimal portfolios with bounded shortfall risks
title_short Optimal portfolios with bounded shortfall risks
title_full Optimal portfolios with bounded shortfall risks
title_fullStr Optimal portfolios with bounded shortfall risks
title_full_unstemmed Optimal portfolios with bounded shortfall risks
title_sort optimal portfolios with bounded shortfall risks
publisher Universitätsbibliothek Chemnitz
publishDate 2004
url http://nbn-resolving.de/urn:nbn:de:swb:ch1-200401202
http://nbn-resolving.de/urn:nbn:de:swb:ch1-200401202
http://www.qucosa.de/fileadmin/data/qucosa/documents/4868/data/ga_wu_tagungsband_2003.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/4868/20040120.txt
work_keys_str_mv AT gabihabdelali optimalportfolioswithboundedshortfallrisks
AT wunderlichralf optimalportfolioswithboundedshortfallrisks
_version_ 1716472064499515392