Correlated ground state ab initio studies of polymers
In this thesis we have investigated the correlated ground state properties of polymers by applying wave-function-based ab-initio quantum-chemical methods such as the Hartree-Fock approach, the full configuration interaction method (FCI), coupled-cluster (CC) and Moller-Plesset second-order perturbat...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
2000
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:swb:14-999171353296-58182 http://nbn-resolving.de/urn:nbn:de:swb:14-999171353296-58182 http://www.qucosa.de/fileadmin/data/qucosa/documents/1593/999171353296-5818.pdf |
Summary: | In this thesis we have investigated the correlated ground state properties of polymers by applying wave-function-based ab-initio quantum-chemical methods such as the Hartree-Fock approach, the full configuration interaction method (FCI), coupled-cluster (CC) and Moller-Plesset second-order perturbation (MP2) theory. The polymers we have studied are the boron-nitrogen polymers, i.e., polyiminoborane (PIB) and polyaminoborane (PAB), the lithium hydride chain and the beryllium hydride polymer as well as the polymethineimine (PMI). The optimized structural parameters, cohesive energies, polymerization ernergies, relative stabilities of isomeric forms and some band structure results are presented. The results demonstrated that quantum chemical ab initio methods can be applied successfully to infinite systems like polymers, although such calculations are still far from being routine. |
---|