Lumineszierende, transparente Nanokomposite - Synthese und Charakterisierung

In der vorliegenden Arbeit wurden neue Nanopartikel/Polymer-Kompositmaterialien und Methoden zur ihrer Herstellung entwickelt. Durch die Verwendung lumineszierender, anorganischer Nanopartikel und transparenter Polymere konnte für verschiedene Systeme die Lumineszenz als Funktion auf die Nanokomposi...

Full description

Bibliographic Details
Main Author: Althues, Holger
Other Authors: Technische Universität Dresden, Chemie und Lebensmittelchemie
Format: Doctoral Thesis
Language:deu
Published: Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden 2007
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:swb:14-1184165800479-32926
http://nbn-resolving.de/urn:nbn:de:swb:14-1184165800479-32926
http://www.qucosa.de/fileadmin/data/qucosa/documents/1668/1184165800479-3292.pdf
id ndltd-DRESDEN-oai-qucosa.de-swb-14-1184165800479-32926
record_format oai_dc
collection NDLTD
language deu
format Doctoral Thesis
sources NDLTD
topic Nanokomposite
Transparenz
Lumineszenz
nanocomposites
transparency
luminescence
ddc:540
rvk:VE 9857
spellingShingle Nanokomposite
Transparenz
Lumineszenz
nanocomposites
transparency
luminescence
ddc:540
rvk:VE 9857
Althues, Holger
Lumineszierende, transparente Nanokomposite - Synthese und Charakterisierung
description In der vorliegenden Arbeit wurden neue Nanopartikel/Polymer-Kompositmaterialien und Methoden zur ihrer Herstellung entwickelt. Durch die Verwendung lumineszierender, anorganischer Nanopartikel und transparenter Polymere konnte für verschiedene Systeme die Lumineszenz als Funktion auf die Nanokomposite übertragen werden. Zunächst wurden in allen Fällen stabile Partikeldispersionen in Monomeren oder Polymerlösungen erzeugt, die in einem zweiten Schritt durch in-situ-Polymerisation oder Filmgießen in Komposite verarbeitet wurden. So konnten orangelumineszierende ZnS:Mn-Nanopartikel durch eine Cofällungsreaktion dargestellt und in eine stabile Dispersion in Acrylsäure überführt werden. Diese Dispersion konnte mit dem Tintenstrahldrucker als transparente Schicht gedruckt und durch Strahlungshärtung polymerisiert werden. Durch die Beimengung von MMA gelang erstmals die Herstellung transparenter ZnS:Mn-Nanokomposite durch die thermische Copolymerisation in Masse. Eine weitere Modifizierung mit Oleylamin ermöglichte die Stabilisierung der Partikel in Laurylacrylat und die Herstellung von ZnS:Mn/PLA-Nanokompositen durch Photopolymerisation der Dispersion. ZnS:Mn/PMMA-Nanokomposite und die isolierten Partikel weisen eine Fluoreszenzquantenausbeute von ca. 30 % auf. Dieser Wert übertrifft bisher publizierte Werte für ZnS:Mn-Nanopartikel deutlich. Blau-grün lumineszierende, kupferdotierte ZnS-Nanopartikel wurden in Wasser synthetisiert und durch einen Phasentransfer mit Octylamin hydrophob modifiziert. Mit den modifizierten ZnS:Cu-Nanopartikeln wurden PLA-Nanokomposite durch Redispergierung und in-situ-Polymerisation hergestellt. Des Weiteren konnten ZnS/PMMA-Filme durch ein Gießverfahren mit den hydrophobisierten ZnS:Mn- und ZnS:Cu-Partikeln hergestellt werden. Zinkoxid-Nanopartikel wurden in Ethanol synthetisiert. Die Partikel konnten als stabile Dispersion in BDMA überführt werden. Die Methode erlaubt die Kontrolle über Partikelgrößen im Bereich von 6-10 nm (DLS) und über die Partikelkonzentration bis zu 10 Gew%. Wachstumsprozesse, die für ZnO in Ethanol nur schwer zu kontrollieren sind, sind in BDMA vollständig eingestellt. Alternativ konnten die Zinkoxid-Nanopartikel durch die Zugabe von Oleylamin aus der ethanolischen Dispersion isoliert und gleichzeitig modifiziert werden. Die hydrophobisierten Partikel sind redispergierbar in unpolaren Monomeren. Mit dieser Methode wurden ZnO-Dispersionen in Laurylacrylat hergestellt. Dispersionen in BDMA und LA konnten photopolymerisiert werden. Die stabilen ZnO-Dispersionen in Acrylatmonomeren mit Konzentrationen bis 10 Gew% und daraus herstellbare, transparente Polymernanokomposite durch UV-Härtung sind als Neuheit zu bewerten. Zur Herstellung von YVO4:Eu/Polymer-Nanokompositen wurde eine Methode für die in-situ-Generierung der Nanopartikel in Methylmethacrylat entwickelt. Dazu wurden neuartige, inverse Mikroemulsionen mit MMA als Ölphase erzeugt. In den Mizellen entstanden durch eine Fällungsreaktion rot-emittierende YVO4:Eu- Nanopartikel. Die resultierende Partikeldispersion in MMA wurde polymerisert und so in Nanokomposite umgewandelt. Eine alternative Herstellungsmethode basiert auf der Synthese von citratstabilisierten YVO4:Eu-Nanopartikeln in Wasser und anschließendem Phasentransfer mit Octylamin. Man erhält ein hydrophobes Pulver, das in Laurylacrylat zu einer stabilen Mischung redispergiert werden kann. Die resultierenden Dispersionen sind photopolymerisierbar [169]. YVO4:Eu enthaltende Polymernanokomposite wurden bisher nicht beschrieben. Der Phasentransfer mit Alkylaminen wurde bereits für Gold-Nanopartikel demonstriert. Die Anwendung auf ZnS:Cu- und YVO4:Eu-Nanopartikel ist als Weiterentwicklung zu betrachten. Zur Partikelgrößenbestimmung an den Monomerdispersionen und Pulvern wurden dynamische Lichtstreuung, Kleinwinkelröntgenstreuung, Transmissionselektronenmikroskopie und Röntgendiffraktometrie eingesetzt. Alle genannten Nanokompositmaterialien konnten mit hoher Transparenz und geringer Trübung hergestellt werden, wie mit Transmissionsmessungen und Trübungsmessungen gezeigt wurde. Mit Transmissionselektronenmikroskopie an Ultramikrotomdünnschnitten konnte für ZnS/PMMA- und ZnO/PBDMA-Nanokomposite eine homogene Partikelverteilung im Polymer nachgewiesen werden. Durch die Variation des Partikelanteils wurden für die verschiedenen Systeme Konzentrationsgrenzen im Bereich von 3-10 Gew% zur Herstellung transparenter Komposite ermittelt. Die Nanokomposite weisen eine intensive Photolumineszenz auf. Blau- (ZnS:Cu), grün- (ZnO), orange- (ZnS:Mn) und rot- (YVO4:Eu) emittierende Nanokomposite wurden erhalten (Abbildung 75). Mit Fluoreszenzspektroskopie wurden die charakteristischen Anregungs- und Emissionsspektren der Kompositproben aufgenommen. Neben der Lumineszenz können die intensive UV-Absorption des ZnO, bzw. der hohe Brechungsindex des ZnS in Nanokompositen nutzbar gemacht werden. Die entwickelten Methoden beruhen auf einfachen, aufskalierbaren Prozessen und die verwendeten Edukte sind kommerziell erhältlich und ungiftig. Die entwickelten stabilen, druckbaren und strahlungshärtbaren Nanopartikeldispersionen in Acrylatund Methacrylatmonomeren sind daher auch für industrielle Anwendungen geeignet.
author2 Technische Universität Dresden, Chemie und Lebensmittelchemie
author_facet Technische Universität Dresden, Chemie und Lebensmittelchemie
Althues, Holger
author Althues, Holger
author_sort Althues, Holger
title Lumineszierende, transparente Nanokomposite - Synthese und Charakterisierung
title_short Lumineszierende, transparente Nanokomposite - Synthese und Charakterisierung
title_full Lumineszierende, transparente Nanokomposite - Synthese und Charakterisierung
title_fullStr Lumineszierende, transparente Nanokomposite - Synthese und Charakterisierung
title_full_unstemmed Lumineszierende, transparente Nanokomposite - Synthese und Charakterisierung
title_sort lumineszierende, transparente nanokomposite - synthese und charakterisierung
publisher Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
publishDate 2007
url http://nbn-resolving.de/urn:nbn:de:swb:14-1184165800479-32926
http://nbn-resolving.de/urn:nbn:de:swb:14-1184165800479-32926
http://www.qucosa.de/fileadmin/data/qucosa/documents/1668/1184165800479-3292.pdf
work_keys_str_mv AT althuesholger lumineszierendetransparentenanokompositesyntheseundcharakterisierung
_version_ 1716471188190920704
spelling ndltd-DRESDEN-oai-qucosa.de-swb-14-1184165800479-329262013-01-07T19:50:47Z Lumineszierende, transparente Nanokomposite - Synthese und Charakterisierung Althues, Holger Nanokomposite Transparenz Lumineszenz nanocomposites transparency luminescence ddc:540 rvk:VE 9857 In der vorliegenden Arbeit wurden neue Nanopartikel/Polymer-Kompositmaterialien und Methoden zur ihrer Herstellung entwickelt. Durch die Verwendung lumineszierender, anorganischer Nanopartikel und transparenter Polymere konnte für verschiedene Systeme die Lumineszenz als Funktion auf die Nanokomposite übertragen werden. Zunächst wurden in allen Fällen stabile Partikeldispersionen in Monomeren oder Polymerlösungen erzeugt, die in einem zweiten Schritt durch in-situ-Polymerisation oder Filmgießen in Komposite verarbeitet wurden. So konnten orangelumineszierende ZnS:Mn-Nanopartikel durch eine Cofällungsreaktion dargestellt und in eine stabile Dispersion in Acrylsäure überführt werden. Diese Dispersion konnte mit dem Tintenstrahldrucker als transparente Schicht gedruckt und durch Strahlungshärtung polymerisiert werden. Durch die Beimengung von MMA gelang erstmals die Herstellung transparenter ZnS:Mn-Nanokomposite durch die thermische Copolymerisation in Masse. Eine weitere Modifizierung mit Oleylamin ermöglichte die Stabilisierung der Partikel in Laurylacrylat und die Herstellung von ZnS:Mn/PLA-Nanokompositen durch Photopolymerisation der Dispersion. ZnS:Mn/PMMA-Nanokomposite und die isolierten Partikel weisen eine Fluoreszenzquantenausbeute von ca. 30 % auf. Dieser Wert übertrifft bisher publizierte Werte für ZnS:Mn-Nanopartikel deutlich. Blau-grün lumineszierende, kupferdotierte ZnS-Nanopartikel wurden in Wasser synthetisiert und durch einen Phasentransfer mit Octylamin hydrophob modifiziert. Mit den modifizierten ZnS:Cu-Nanopartikeln wurden PLA-Nanokomposite durch Redispergierung und in-situ-Polymerisation hergestellt. Des Weiteren konnten ZnS/PMMA-Filme durch ein Gießverfahren mit den hydrophobisierten ZnS:Mn- und ZnS:Cu-Partikeln hergestellt werden. Zinkoxid-Nanopartikel wurden in Ethanol synthetisiert. Die Partikel konnten als stabile Dispersion in BDMA überführt werden. Die Methode erlaubt die Kontrolle über Partikelgrößen im Bereich von 6-10 nm (DLS) und über die Partikelkonzentration bis zu 10 Gew%. Wachstumsprozesse, die für ZnO in Ethanol nur schwer zu kontrollieren sind, sind in BDMA vollständig eingestellt. Alternativ konnten die Zinkoxid-Nanopartikel durch die Zugabe von Oleylamin aus der ethanolischen Dispersion isoliert und gleichzeitig modifiziert werden. Die hydrophobisierten Partikel sind redispergierbar in unpolaren Monomeren. Mit dieser Methode wurden ZnO-Dispersionen in Laurylacrylat hergestellt. Dispersionen in BDMA und LA konnten photopolymerisiert werden. Die stabilen ZnO-Dispersionen in Acrylatmonomeren mit Konzentrationen bis 10 Gew% und daraus herstellbare, transparente Polymernanokomposite durch UV-Härtung sind als Neuheit zu bewerten. Zur Herstellung von YVO4:Eu/Polymer-Nanokompositen wurde eine Methode für die in-situ-Generierung der Nanopartikel in Methylmethacrylat entwickelt. Dazu wurden neuartige, inverse Mikroemulsionen mit MMA als Ölphase erzeugt. In den Mizellen entstanden durch eine Fällungsreaktion rot-emittierende YVO4:Eu- Nanopartikel. Die resultierende Partikeldispersion in MMA wurde polymerisert und so in Nanokomposite umgewandelt. Eine alternative Herstellungsmethode basiert auf der Synthese von citratstabilisierten YVO4:Eu-Nanopartikeln in Wasser und anschließendem Phasentransfer mit Octylamin. Man erhält ein hydrophobes Pulver, das in Laurylacrylat zu einer stabilen Mischung redispergiert werden kann. Die resultierenden Dispersionen sind photopolymerisierbar [169]. YVO4:Eu enthaltende Polymernanokomposite wurden bisher nicht beschrieben. Der Phasentransfer mit Alkylaminen wurde bereits für Gold-Nanopartikel demonstriert. Die Anwendung auf ZnS:Cu- und YVO4:Eu-Nanopartikel ist als Weiterentwicklung zu betrachten. Zur Partikelgrößenbestimmung an den Monomerdispersionen und Pulvern wurden dynamische Lichtstreuung, Kleinwinkelröntgenstreuung, Transmissionselektronenmikroskopie und Röntgendiffraktometrie eingesetzt. Alle genannten Nanokompositmaterialien konnten mit hoher Transparenz und geringer Trübung hergestellt werden, wie mit Transmissionsmessungen und Trübungsmessungen gezeigt wurde. Mit Transmissionselektronenmikroskopie an Ultramikrotomdünnschnitten konnte für ZnS/PMMA- und ZnO/PBDMA-Nanokomposite eine homogene Partikelverteilung im Polymer nachgewiesen werden. Durch die Variation des Partikelanteils wurden für die verschiedenen Systeme Konzentrationsgrenzen im Bereich von 3-10 Gew% zur Herstellung transparenter Komposite ermittelt. Die Nanokomposite weisen eine intensive Photolumineszenz auf. Blau- (ZnS:Cu), grün- (ZnO), orange- (ZnS:Mn) und rot- (YVO4:Eu) emittierende Nanokomposite wurden erhalten (Abbildung 75). Mit Fluoreszenzspektroskopie wurden die charakteristischen Anregungs- und Emissionsspektren der Kompositproben aufgenommen. Neben der Lumineszenz können die intensive UV-Absorption des ZnO, bzw. der hohe Brechungsindex des ZnS in Nanokompositen nutzbar gemacht werden. Die entwickelten Methoden beruhen auf einfachen, aufskalierbaren Prozessen und die verwendeten Edukte sind kommerziell erhältlich und ungiftig. Die entwickelten stabilen, druckbaren und strahlungshärtbaren Nanopartikeldispersionen in Acrylatund Methacrylatmonomeren sind daher auch für industrielle Anwendungen geeignet. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden Technische Universität Dresden, Chemie und Lebensmittelchemie Prof. Stefan Kaskel Prof. Stefan Kaskel Prof. Alexander Eychmüller Prof. Claus Feldmann 2007-07-11 doc-type:doctoralThesis application/pdf http://nbn-resolving.de/urn:nbn:de:swb:14-1184165800479-32926 urn:nbn:de:swb:14-1184165800479-32926 PPN267472617 http://www.qucosa.de/fileadmin/data/qucosa/documents/1668/1184165800479-3292.pdf deu