Untersuchungen zum Vorkommen und Transportverhalten von Partikeln in Grundwässern und Abschätzung ihrer Relevanz für den Schadstofftransport

Im Grundwasser mobile Feststoff-Partikel stehen im Verdacht, den Transport schwerlöslicher Schadstoffe zu begünstigen. Die Partikel-Konzentration im Wasser lässt sich aber nur mittels einer aufwändigen Probenahme bestimmen. Vor diesem Hintergrund wurden im Rahmen dieser Arbeit Feld- und Laborversuch...

Full description

Bibliographic Details
Main Author: Marre, Dirk
Other Authors: Technische Universität Dresden, Forst-, Geo- und Hydrowissenschaften, Wasserwesen, Institut für Grundwasserwirtschaft
Format: Doctoral Thesis
Language:deu
Published: Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden 2004
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:swb:14-1090908441734-83289
http://nbn-resolving.de/urn:nbn:de:swb:14-1090908441734-83289
http://www.qucosa.de/fileadmin/data/qucosa/documents/1159/1090908441734-8328.pdf
Description
Summary:Im Grundwasser mobile Feststoff-Partikel stehen im Verdacht, den Transport schwerlöslicher Schadstoffe zu begünstigen. Die Partikel-Konzentration im Wasser lässt sich aber nur mittels einer aufwändigen Probenahme bestimmen. Vor diesem Hintergrund wurden im Rahmen dieser Arbeit Feld- und Laborversuche durchgeführt. In Feldversuchen zur Probenahme wurde festgestellt, dass für eine Stabilisierung der Partikel-Anzahl-Konzentration (CN in Partikel>Nachweisgrenze/L) die Dauer der Probenahme ausschlaggebend ist, nicht das insgesamt geförderte Volumen. Eine hohe Förderrate hat dabei nicht automatisch eine stärkere Mobilisierung von Partikeln aus dem Partikel-Depot im Umfeld der Messstelle zur Folge, wie es häufig postuliert wird. Die Gewinnung einer repräsentativen Partikelprobe macht eine Probenahme-Dauer von mindestens 5, häufig sogar über 10 oder 12 Stunden erforderlich. Empfehlungen zur Probenahme wurden erarbeitet. Es wurde aber festgestellt, dass sich stabilisierte Werte für CN als Funktion der Förderdauer (t in min) nach CN = a ? t^(-½) ungefähr abschätzen lassen, wenn der Parameter a über CN nach ca. 60 Minuten ermittelt wird. Bei Wässern mit Sauerstoff-Konzentrationen über ca. 1 mg/L kann überdies auch die Verteilung der Partikel auf einzelne Größenklassen bereits nach dieser Zeit ermittelt werden; bei sauerstoffärmeren Wässern verändert sie sich später noch. Angesichts einer starken Variation von CN einer Messstelle ist es generell aber nur möglich, eine Größenordnung für die Hintergrundkonzentration anzugeben. Von Messstelle zu Messstelle sind große Unterschiede bei CN festzustellen. Die Konzentration ist dabei nicht eindeutig abhängig von der Lithologie des Grundwasserleiters oder der Zusammensetzung des Grundwassers. Allerdings konnte eine schwache Korrelation mit dem Redox-Potential (Eh in mV) des Wassers gefunden werden (CN = 1,8?10^6?e^( 0,0087?Eh) [Partikel>2,58µm/L]; r² ≈ 0,46). Hierüber besteht die Möglichkeit, CN eines Grundwassers auch ohne Partikelmessung abzuschätzen. Insgesamt bewegen sich die Partikel-Massen-Konzentrationen (C in mg/L) der beprobten Wässer meist im Bereich von <1 mg/L, öfters sogar <0,1 mg/L, wenn die im Verlaufe von Probenahme und Messung ausgefällten Fe- und Mn-Oxide nicht berücksichtigt werden. Solche Konzentrationen sind vermutlich kaum in der Lage, relevante Mengen selbst sehr hydrophober Schadstoffen aufzunehmen und zu transportieren. Versuche mit Phenanthren ergaben zudem, dass es anscheinend weniger an bereits in Suspension befindliche Partikel sorbiert, sondern vielmehr in sorbiertem oder kristallinen Zustand aus dem Depot erodiert wird. In Laborversuchen wurde weiter gezeigt, dass in natürlichen Sedimenten ein großes Depot mobilisierbarer Partikel vorhanden ist, das Partikel über einen sehr langen Zeitraum kontinuierlich abgeben kann. Durchbruchsversuche ergaben außerdem, dass ein Großteil zugegebener Partikel bei der Passage durch eine Sedimentprobe zurückgehalten und nur sehr allmählich wieder abgegeben wird. Allerdings war auch ein schneller (präferentieller) Durchbruch zu verzeichnen. In Modellrechnungen konnte gezeigt werden, dass sich ein solcher Partikeltransport weder über eine Filterfunktion noch über die Transportgleichung zufrieden stellend berechnen lässt. Daher ist es nötig, einerseits einen bevorzugten Transport und andererseits eine starke Retardation zu berücksichtigen. Letzteres kann am besten über verschiedene Retardationsfaktoren oder ein dynamisches Partikel-Depot mit Anlagerungs- und Ablösungskonstanten geschehen. === Solid particles that are mobile in groundwater are suspected to enhance the transport of hardly soluble contaminants. But particle concentrations in water can only be measured using time-consuming sampling-procedures. On this background field- and laboratory-experiments were conducted in this work. In field experiments on sampling it turned out, that sampling time is crucial for stabilizing particle number-concentration (CN in particles>detection limit/L), not the volume sampled. A high sampling rate does not -as often argued- automatically result into higher mobilization of particles from the particle-depot in the vicinity of the sampling-well. Obtaining a representative particle sample requires a sampling-time of at least 5, often even more than 10 or 12 hours. In this work recommendations on sampling are given. It was noticed that stabilized values of CN can be estimated as function of sampling time (t in min) by CN = A ? t^(-½), if parameter A is calculated using CN after about 60 minutes. In waters having oxygen-concentrations above approximately 1 mg/L even distribution of the particles into size classes can be estimated after this time; in oxygen-poor waters size-distributions stabilized much later. Because of strong variations of CN in a single measuring well it is generally only possible to give the magnitude of the background-particle-concentration. But among several measuring wells CN may differ by several magnitudes. The concentrations do neither definitely depend upon the lithology of the aquifer nor on the groundwater-composition. But a weak correlation to the redox-potential (Eh in mV) can be found (CN = 1.8 ? 10^6 ? e^( 0.0087 ? Eh) [particles>2.58µm/L]; r² ≈ 0,46). Using this connection it is possible to estimate a magnitude of CN of a groundwater without even measuring particles. Over all particle mass-concentrations (C in mg/L) of all sampled groundwaters were almost always <1 mg/L, often even <0.1 mg/L, at least if iron- and manganese-oxides that precipitated during measurements were ignored. Such particle concentrations are probably hardly capable of adsorbing and carrying relevant amounts of contaminants, even very hydrophobic ones. Experiments using phenanthrene in contaminated sand additionally showed that it is probably hardly adsorbed onto already suspended particles, but mostly eroded from the particle depot in adsorbed or crystalline state. In laboratory experiments it was further shown that there is a huge depot of mobilizable particles in natural sediments that can continually release particles over a very long period of time. Break-through-experiments showed in addition that a large part of particles fed into the system are retained during the passage through a sediment sample and that they are re-released only very slowly. However, there also was a fast (preferential) break-through. In model calculations it could be shown that such a particle transport can neither be sufficiently described by the filter-function nor by the transport equation. Because of that it is necessary to take into consideration a preferential transport on the one hand and a strong retardation on the other. The last one can at the best be described by several retardation-factors or a dynamic particle-depot having constant attachment- and detachment rates.