Ein neues Konzept zur Modellierung der Positronenemitter-Produktion bei der Partikeltherapie

Eine der drei Säulen der Krebsbehandlung ist die Strahlentherapie. Einer der neuesten Ansätze hierbei ist die Bestrahlung mit Ionen, zurzeit insbesondere Protonen und Kohlenstoffionen. Diese Hochpräzisionstherapie erfordert ein hohes Maß an Kontrolle, da die applizierte Dosisverteilung sehr empfindl...

Full description

Bibliographic Details
Main Author: Priegnitz, Marlen
Other Authors: TU Dresden,
Format: Others
Language:deu
Published: Forschungszentrum Dresden 2012
Subjects:
PET
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-99621
http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-99621
http://www.qucosa.de/fileadmin/data/qucosa/documents/9962/17991.pdf
Description
Summary:Eine der drei Säulen der Krebsbehandlung ist die Strahlentherapie. Einer der neuesten Ansätze hierbei ist die Bestrahlung mit Ionen, zurzeit insbesondere Protonen und Kohlenstoffionen. Diese Hochpräzisionstherapie erfordert ein hohes Maß an Kontrolle, da die applizierte Dosisverteilung sehr empfindlich von Dichteveränderungen im durchstrahlten Gewebe abhängt. Das bisher einzige klinisch eingesetzte Verfahren zur in vivo Überwachung der Dosisapplikation bei Ionenbestrahlungen ist die Positronen-Emissions-Tomographie (PET). Sie ermöglicht eine Verifikation der Teilchenreichweite sowie der Lage des Bestrahlungsfeldes. Die mit der PET-Methode gemessene Aktivitätsverteilung lässt sich jedoch nicht direkt mit der geplanten Dosisverteilung vergleichen. Daher ist eine Vorherberechnung der erwarteten Aktivitätsverteilung auf der Grundlage des Bestrahlungsplanes notwendig, welche dann mit der Messung verglichen wird und eine qualitative Beurteilung der Bestrahlung ermöglicht. Die Vorherberechnung der erwarteten Aktivitätsverteilung erfordert bislang die Kenntnis einer Vielzahl von Wirkungsquerschnitten. Nur für wenige dieser Wirkungsquerschnitte liegen jedoch Messdaten im benötigten Energiebereich und mit ausreichender Genauigkeit vor. Daher verwenden viele Monte-Carlo-Simulationen intrinsische Kernmodelle oder semi-empirische Modellierungen, die häufig eine unzureichende Genauigkeit aufweisen. In Fachkreisen ist bisher noch nicht geklärt, welches die optimale Ionensorte für die Tumortherapie ist. Insbesondere Lithiumionen weisen aufgrund ihrer physikalischen und radiobiologischen Eigenschaften ein großes Potenzial auf. Auch für Bestrahlungen mit diesen Ionen ist ein PET-Monitoring der Therapie erstrebenswert. In der vorliegenden Arbeit wird zunächst die Anwendbarkeit der Reichweite-Verifikation mittels PET bei Bestrahlung mit Lithiumionen gezeigt. Des Weiteren wird ein Konzept zur Modellierung der Positronenemitter-Verteilung ohne Kenntnis der Wirkungsquerschnitte entwickelt. Diese Vorhersage beruht auf in Referenzmaterialien (Wasser, Graphit und Polyethylen) gemessenen tiefenabhängigen Positronenemitter-Yields, mit welchen durch geeignete Linearkombination die Verteilung der Positronenemitter in beliebigen Materialien bekannter Stöchiometrie vorausberechnet werden kann. Die Anwendbarkeit des Yield-Konzeptes wird gezeigt für Lithium- und Kohlenstoffbestrahlungen homogener Polymethylmethacrylat (PMMA) Targets sowie verschiedener inhomogener Targets. === One of the three main tumour treatment forms is radiation therapy. Here, the application of ion beams, in particular protons and carbon ions, is of growing importance. This high precision therapy requires a consequent monitoring of the dose delivery since the induced dose deposition is very sensitive to density changes in the irradiated tissue. Up to now, positron emission tomography (PET) is the only in vivo method in clinical use for monitoring the dose deposition in ion beam therapy. It allows for the verification of the particle range as well as the position of the irradiation field. The distribution of activity measured by means of PET cannot be compared directly to the planned dose distribution. Thus, a calculation of the expected activity distribution is required which then can be compared to the measurement. Simulation of the expected activity distribution requires the exact knowledge of various cross sections. Only a few of them have been measured in the required energy range so far. Therefore, in Monte Carlo simulations often intrinsic nuclear models or semi-empirical parametrization are used which often exhibit insufficient accuray. Among experts the question on the optimum ion species for tumour therapy is still open. Especially lithium ions exhibit a great potential due to their favourable physical and radiobiological properties. Also for these ions a PET monitoring is highly desirable. The presented work shows the feasibility of range verification by means of PET for lithium irradiation. Furthermore, a concept for modeling positron emitter distributions without the knowledge of cross sections is developed. This prediction is based on depth-dependent positron emitter yields measured in reference materials (water, graphite and polyethylene). With these data the positron emitter distribution in any material of known stoichiometry can be calculated by means of an appropriate linear combination. The feasibility of the yield concept is shown for lithium and carbon irradiation, respectively, of homogeneous polymethyl methacrylate (PMMA) as well as various inhomogeneous targets.