Development and Characterization of a tunable ultrafast X-ray source via Inverse Compton Scattering
Ultrashort, nearly monochromatic hard X-ray pulses enrich the understanding of the dynamics and function of matter, e.g., the motion of atomic structures associated with ultrafast phase transitions, structural dynamics and (bio)chemical reactions. Inverse Compton backscattering of intense laser puls...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
Forschungszentrum Dresden
2015
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-162231 http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-162231 http://www.qucosa.de/fileadmin/data/qucosa/documents/16223/HZDR-055.pdf |
id |
ndltd-DRESDEN-oai-qucosa.de-bsz-d120-qucosa-162231 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Brilliant Röntgenstrahlung Inverse Compton Rückstreuung Laser ICS Compton backscattering laser X-ray ddc:530 |
spellingShingle |
Brilliant Röntgenstrahlung Inverse Compton Rückstreuung Laser ICS Compton backscattering laser X-ray ddc:530 Jochmann, Axel Development and Characterization of a tunable ultrafast X-ray source via Inverse Compton Scattering |
description |
Ultrashort, nearly monochromatic hard X-ray pulses enrich the understanding of the dynamics and function of matter, e.g., the motion of atomic structures associated with ultrafast phase transitions, structural dynamics and (bio)chemical reactions. Inverse Compton backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright X-ray pulses which can be used in a pumpprobe experiment, but also for the investigation of the electron beam dynamics at the interaction point.
The focus of this PhD work lies on the detailed understanding of the kinematics during the interaction of the relativistic electron bunch and the laser pulse in order to quantify the influence of various experiment parameters on the emitted X-ray radiation.
The experiment was conducted at the ELBE center for high power radiation sources using the ELBE superconducting linear accelerator and the DRACO Ti:sapphire laser system. The combination of both these state-of-the-art apparatuses guaranteed the control and stability of the interacting beam parameters throughout the measurement.
The emitted X-ray spectra were detected with a pixelated detector of 1024 by 256 elements (each 26μm by 26μm) to achieve an unprecedented spatial and energy resolution for a full characterization of the emitted spectrum to reveal parameter influences and correlations of both interacting beams. In this work the influence of the electron beam energy, electron beam emittance, the laser bandwidth and the energy-anglecorrelation on the spectra of the backscattered X-rays is quantified.
A rigorous statistical analysis comparing experimental data to ab-initio 3D simulations enabled, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard X-ray source PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) and potential all optical gamma-ray sources.
The results will serve as a milestone and starting point for the scaling of the Xray flux based on available interaction parameters of an ultrashort bright X-ray source at the ELBE center for high power radiation sources. The knowledge of the spatial and spectral distribution of photons from an inverse Compton scattering source is essential in designing future experiments as well as for tailoring the X-ray spectral properties to an experimental need. === Ultrakurze, quasi-monochromatische harte Röntgenpulse erweitern das Verständnis für die dynamischen Prozesse und funktionalen Zusammenhänge in Materie, beispielsweise die Dynamik in atomaren Strukturen bei ultraschnellen Phasenübergängen, Gitterbewegungen und (bio)chemischen Reaktionen. Compton-Rückstreuung erlaubt die Erzeugung der für ein pump-probe-Experiment benötigten intensiven Röntgenpulse und ermöglicht gleichzeitig einen Einblick in die komplexen kinematischen Prozesse während der Wechselwirkung von Elektronen und Photonen.
Ziel dieser Arbeit ist, ein quantitatives Verständnis der verschiedenen experimentellen Einflüsse auf die emittierte Röntgenstrahlung bei der Streuung von Laserphotonen an relativistischen Elektronen zu entwickeln.
Die Experimente wurden am ELBE - Zentrum für Hochleistungs-Strahlenquellen des Helmholtz-Zentrums Dresden - Rossendorf durchgeführt. Der verwendete supraleitende Linearbschleuniger ELBE und der auf Titan-Saphir basierende Hochleistungslaser DRACO garantieren ein Höchstmaß an Kontrolle und Stabilität der experimentellen Bedingungen. Zur Messung der emittierten Röntgenstrahlung wurde ein Siliziumdetektor mit 1024x256 Pixeln (Pixelgröße 26μm × 26μm) verwendet, welcher für eine bisher nicht erreichte spektrale und räumliche Auflösung sorgt. Die so erfolgte vollständige Charakterisierung der Energie-Winkel-Beziehung erlaubt Rückschlüsse auf Parametereinflüsse und Korrelationen von Elektronen- und Laserstrahl.
Eine umfassende statistische Analyse, bei der ab-initio 3D Simulationen mit den experimentellen Daten verglichen und ausgewertet wurden, ermöglichte u.a. die Bestimmung der Elektronenstrahldivergenz mit einer Genauigkeit von 1.5% und erlaubt Vorhersagen zur zu erwartenden Strahlung der zukünftigen brillianten Röntgenquelle PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) und potentiellen lasergetriebenen Gammastrahlungsquellen. Die Ergebnisse dienen als Fixpunkt für die Skalierung des erwarteten Photonenflusses der Röntgenquelle für die verfügbaren Ausgangsgrößen am Helmholtz-Zentrum Dresden - Rossendorf. Das Wissen um die räumliche und spektrale Verteilung der Röntgenstrahlung ist entscheidend für die Planung zukünftiger Experimente sowie zur Anpassung der Quelle an experimentelle Bedürfnisse. |
author2 |
Technische Universität Dresden, Mathematik und Naturwissenschaften |
author_facet |
Technische Universität Dresden, Mathematik und Naturwissenschaften Jochmann, Axel |
author |
Jochmann, Axel |
author_sort |
Jochmann, Axel |
title |
Development and Characterization of a tunable ultrafast X-ray source via Inverse Compton Scattering |
title_short |
Development and Characterization of a tunable ultrafast X-ray source via Inverse Compton Scattering |
title_full |
Development and Characterization of a tunable ultrafast X-ray source via Inverse Compton Scattering |
title_fullStr |
Development and Characterization of a tunable ultrafast X-ray source via Inverse Compton Scattering |
title_full_unstemmed |
Development and Characterization of a tunable ultrafast X-ray source via Inverse Compton Scattering |
title_sort |
development and characterization of a tunable ultrafast x-ray source via inverse compton scattering |
publisher |
Forschungszentrum Dresden |
publishDate |
2015 |
url |
http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-162231 http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-162231 http://www.qucosa.de/fileadmin/data/qucosa/documents/16223/HZDR-055.pdf |
work_keys_str_mv |
AT jochmannaxel developmentandcharacterizationofatunableultrafastxraysourceviainversecomptonscattering |
_version_ |
1716731839511527424 |
spelling |
ndltd-DRESDEN-oai-qucosa.de-bsz-d120-qucosa-1622312015-03-12T03:29:48Z Development and Characterization of a tunable ultrafast X-ray source via Inverse Compton Scattering Jochmann, Axel Brilliant Röntgenstrahlung Inverse Compton Rückstreuung Laser ICS Compton backscattering laser X-ray ddc:530 Ultrashort, nearly monochromatic hard X-ray pulses enrich the understanding of the dynamics and function of matter, e.g., the motion of atomic structures associated with ultrafast phase transitions, structural dynamics and (bio)chemical reactions. Inverse Compton backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright X-ray pulses which can be used in a pumpprobe experiment, but also for the investigation of the electron beam dynamics at the interaction point. The focus of this PhD work lies on the detailed understanding of the kinematics during the interaction of the relativistic electron bunch and the laser pulse in order to quantify the influence of various experiment parameters on the emitted X-ray radiation. The experiment was conducted at the ELBE center for high power radiation sources using the ELBE superconducting linear accelerator and the DRACO Ti:sapphire laser system. The combination of both these state-of-the-art apparatuses guaranteed the control and stability of the interacting beam parameters throughout the measurement. The emitted X-ray spectra were detected with a pixelated detector of 1024 by 256 elements (each 26μm by 26μm) to achieve an unprecedented spatial and energy resolution for a full characterization of the emitted spectrum to reveal parameter influences and correlations of both interacting beams. In this work the influence of the electron beam energy, electron beam emittance, the laser bandwidth and the energy-anglecorrelation on the spectra of the backscattered X-rays is quantified. A rigorous statistical analysis comparing experimental data to ab-initio 3D simulations enabled, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard X-ray source PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) and potential all optical gamma-ray sources. The results will serve as a milestone and starting point for the scaling of the Xray flux based on available interaction parameters of an ultrashort bright X-ray source at the ELBE center for high power radiation sources. The knowledge of the spatial and spectral distribution of photons from an inverse Compton scattering source is essential in designing future experiments as well as for tailoring the X-ray spectral properties to an experimental need. Ultrakurze, quasi-monochromatische harte Röntgenpulse erweitern das Verständnis für die dynamischen Prozesse und funktionalen Zusammenhänge in Materie, beispielsweise die Dynamik in atomaren Strukturen bei ultraschnellen Phasenübergängen, Gitterbewegungen und (bio)chemischen Reaktionen. Compton-Rückstreuung erlaubt die Erzeugung der für ein pump-probe-Experiment benötigten intensiven Röntgenpulse und ermöglicht gleichzeitig einen Einblick in die komplexen kinematischen Prozesse während der Wechselwirkung von Elektronen und Photonen. Ziel dieser Arbeit ist, ein quantitatives Verständnis der verschiedenen experimentellen Einflüsse auf die emittierte Röntgenstrahlung bei der Streuung von Laserphotonen an relativistischen Elektronen zu entwickeln. Die Experimente wurden am ELBE - Zentrum für Hochleistungs-Strahlenquellen des Helmholtz-Zentrums Dresden - Rossendorf durchgeführt. Der verwendete supraleitende Linearbschleuniger ELBE und der auf Titan-Saphir basierende Hochleistungslaser DRACO garantieren ein Höchstmaß an Kontrolle und Stabilität der experimentellen Bedingungen. Zur Messung der emittierten Röntgenstrahlung wurde ein Siliziumdetektor mit 1024x256 Pixeln (Pixelgröße 26μm × 26μm) verwendet, welcher für eine bisher nicht erreichte spektrale und räumliche Auflösung sorgt. Die so erfolgte vollständige Charakterisierung der Energie-Winkel-Beziehung erlaubt Rückschlüsse auf Parametereinflüsse und Korrelationen von Elektronen- und Laserstrahl. Eine umfassende statistische Analyse, bei der ab-initio 3D Simulationen mit den experimentellen Daten verglichen und ausgewertet wurden, ermöglichte u.a. die Bestimmung der Elektronenstrahldivergenz mit einer Genauigkeit von 1.5% und erlaubt Vorhersagen zur zu erwartenden Strahlung der zukünftigen brillianten Röntgenquelle PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) und potentiellen lasergetriebenen Gammastrahlungsquellen. Die Ergebnisse dienen als Fixpunkt für die Skalierung des erwarteten Photonenflusses der Röntgenquelle für die verfügbaren Ausgangsgrößen am Helmholtz-Zentrum Dresden - Rossendorf. Das Wissen um die räumliche und spektrale Verteilung der Röntgenstrahlung ist entscheidend für die Planung zukünftiger Experimente sowie zur Anpassung der Quelle an experimentelle Bedürfnisse. Forschungszentrum Dresden Technische Universität Dresden, Mathematik und Naturwissenschaften Helmholtz-Zentrum Dresden - Rossendorf, 2015-03-11 doc-type:report application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-162231 urn:nbn:de:bsz:d120-qucosa-162231 issn:2191-8708 http://www.qucosa.de/fileadmin/data/qucosa/documents/16223/HZDR-055.pdf eng dcterms:isPartOf:Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-055 |