Spectral History Modeling in the Reactor Dynamics Code DYN3D
A new method of treating spectral history effects in reactor core calculations was developed and verified in this dissertation. The nature of history effects is a dependence of fuel properties not only on the burnup, but also on the local spectral conditions during burnup. The basic idea of the prop...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
Forschungszentrum Dresden
2014
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-144820 http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-144820 http://www.qucosa.de/fileadmin/data/qucosa/documents/14482/20468.pdf |
Summary: | A new method of treating spectral history effects in reactor core calculations was developed and verified in this dissertation. The nature of history effects is a dependence of fuel properties not only on the burnup, but also on the local spectral conditions during burnup. The basic idea of the proposed method is the use of the plutonium-239 concentration as the spectral history indicator. The method was implemented in the reactor dynamics code DYN3D and provides a correction for nodal cross sections according to the local spectral history.
A verification of the new method was performed by single-assembly calculations in comparison with results of the lattice code HELIOS. The application of plutonium-based history correction significantly improves the cross section estimation accuracy both for UOX and MOX fuel, with quadratic and hexagonal geometry.
The new method was applied to evaluate the influence of history effects on full-core calculation results. Analysis of a PWR equilibrium fuel cycle has shown a significant effect on the axial power distribution during a whole cycle, which causes axial temperature and burnup redistributions. The observed neutron flux redistribution improves neutron economy, so the fuel cycle is longer than in calculations without history corrections. Analyses of hypothetical control rod ejection accidents have shown a minor influence of history effects on the transient course and safety relevant parameters. === Eine neue Methode zur Modellierung der Spektralgeschichte als Bestandteil von Kernreaktorberechnungen wurde in dieser Dissertation entwickelt und verifiziert. Die spektrale Abbrandgeschichte hat praktische Bedeutung für die Brennstoffeigenschaften, die nicht nur von der Höhe des Abbrandwertes, sondern auch vom lokalen Neutronenspektrum während des Abbrandprozesses abhängen. Die Grundidee der vorgeschlagenen Methode besteht in der Nutzung der lokalen Plutonium-239-Konzentration als quantitativen Indikator für die spektrale Abbrandgeschichte. Die Methode wurde in das Reaktordynamikprogramm DYN3D implementiert; sie gewährleistet eine Korrektur der nodalen Wirkungsquerschnitte gemäß der lokalen spektralen Abbrandgeschichte.
Eine Verifikation der neuen Methode wurde mit Einzelbrennelementberechnungen im Vergleich zu Ergebnissen des Zellabbrandprogramms HELIOS durchgeführt. Die Korrektur auf der Basis der Plutoniumkonzentration verbessert die Genauigkeit der Wirkungsquerschnitte signifikant, sowohl für UOX als auch für MOX, in quadratischer und hexagonaler Geometrie.
Die neue Methode wurde für die Bestimmung des Einflusses der spektralen Abbrandgeschichte auf die Modellierung ganzer Reaktorkerne angewandt. Die Analyse eines DWRGleichgewichtszyklus zeigt eine signifikante Auswirkung auf die axiale Leistungsverteilung während eines ganzen Zyklus. Über die axiale Temperaturverteilung (Rückkopplung) entsteht wiederum eine Rückwirkung auf die Abbrandverteilung selbst. Die beobachtete modifizierte Neutronenflussverteilung verbessert die Neutronenökonomie, sodass der Brennstoffzyklus länger wird, verglichen mit Berechnungen ohne Berücksichtigung der Abbrandgeschichte. Analysen von hypothetischen Stabauswurfszenarien ergaben einen nur geringen Einfluss der Abbrandgeschichte auf Transientenverlauf und sicherheitsrelevante Parameter. |
---|