Studies on two specific inverse problems from imaging and finance
This thesis deals with regularization parameter selection methods in the context of Tikhonov-type regularization with Poisson distributed data, in particular the reconstruction of images, as well as with the identification of the volatility surface from observed option prices. In Part I we examine t...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Universitätsbibliothek Chemnitz
2012
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-91587 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-91587 http://www.qucosa.de/fileadmin/data/qucosa/documents/9158/Dissertation_Nadja_Rueckert.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/9158/signatur.txt.asc |
id |
ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-qucosa-91587 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-qucosa-915872013-01-07T20:05:32Z Studies on two specific inverse problems from imaging and finance Rückert, Nadja Tikhonov-Regularisierung Kullback-Leibler Totale Variation Poissonverteilte Daten Bildverarbeitung Wahl des Regularisierungsparameters Diskrepanzprinzip L-Kurve Quasi-Optimalitätskriterium PET Black-Scholes-Modell Volatilität Dupire Call-Option Regularisierung durch Diskretisierung Parameter Identifikationsalgorithmus Tikhonov-Regularization Kullback-Leibler Total Variation Poisson distributed data Regularization parameter selection methods discrepancy principle L-curve method quasi-optimality criterion PET Black-Scholes model volatility Dupire call option regularization by discretization parameter identification localization algorithm imaging finance ddc:515 ddc:519 Tichonov-Regularisierung Black-Scholes-Modell Volatilität Regularisierungsverfahren Poisson-Verteilung Bildverarbeitung Call-Option Parameter <Mathematik> This thesis deals with regularization parameter selection methods in the context of Tikhonov-type regularization with Poisson distributed data, in particular the reconstruction of images, as well as with the identification of the volatility surface from observed option prices. In Part I we examine the choice of the regularization parameter when reconstructing an image, which is disturbed by Poisson noise, with Tikhonov-type regularization. This type of regularization is a generalization of the classical Tikhonov regularization in the Banach space setting and often called variational regularization. After a general consideration of Tikhonov-type regularization for data corrupted by Poisson noise, we examine the methods for choosing the regularization parameter numerically on the basis of two test images and real PET data. In Part II we consider the estimation of the volatility function from observed call option prices with the explicit formula which has been derived by Dupire using the Black-Scholes partial differential equation. The option prices are only available as discrete noisy observations so that the main difficulty is the ill-posedness of the numerical differentiation. Finite difference schemes, as regularization by discretization of the inverse and ill-posed problem, do not overcome these difficulties when they are used to evaluate the partial derivatives. Therefore we construct an alternative algorithm based on the weak formulation of the dual Black-Scholes partial differential equation and evaluate the performance of the finite difference schemes and the new algorithm for synthetic and real option prices. Universitätsbibliothek Chemnitz TU Chemnitz, Fakultät für Mathematik Prof. Dr. Bernd Hofmann Prof. Dr. Bernd Hofmann Prof. Dr. Christine Böckmann 2012-07-20 doc-type:doctoralThesis application/pdf text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-91587 urn:nbn:de:bsz:ch1-qucosa-91587 http://www.qucosa.de/fileadmin/data/qucosa/documents/9158/Dissertation_Nadja_Rueckert.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/9158/signatur.txt.asc eng |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
Tikhonov-Regularisierung Kullback-Leibler Totale Variation Poissonverteilte Daten Bildverarbeitung Wahl des Regularisierungsparameters Diskrepanzprinzip L-Kurve Quasi-Optimalitätskriterium PET Black-Scholes-Modell Volatilität Dupire Call-Option Regularisierung durch Diskretisierung Parameter Identifikationsalgorithmus Tikhonov-Regularization Kullback-Leibler Total Variation Poisson distributed data Regularization parameter selection methods discrepancy principle L-curve method quasi-optimality criterion PET Black-Scholes model volatility Dupire call option regularization by discretization parameter identification localization algorithm imaging finance ddc:515 ddc:519 Tichonov-Regularisierung Black-Scholes-Modell Volatilität Regularisierungsverfahren Poisson-Verteilung Bildverarbeitung Call-Option Parameter <Mathematik> |
spellingShingle |
Tikhonov-Regularisierung Kullback-Leibler Totale Variation Poissonverteilte Daten Bildverarbeitung Wahl des Regularisierungsparameters Diskrepanzprinzip L-Kurve Quasi-Optimalitätskriterium PET Black-Scholes-Modell Volatilität Dupire Call-Option Regularisierung durch Diskretisierung Parameter Identifikationsalgorithmus Tikhonov-Regularization Kullback-Leibler Total Variation Poisson distributed data Regularization parameter selection methods discrepancy principle L-curve method quasi-optimality criterion PET Black-Scholes model volatility Dupire call option regularization by discretization parameter identification localization algorithm imaging finance ddc:515 ddc:519 Tichonov-Regularisierung Black-Scholes-Modell Volatilität Regularisierungsverfahren Poisson-Verteilung Bildverarbeitung Call-Option Parameter <Mathematik> Rückert, Nadja Studies on two specific inverse problems from imaging and finance |
description |
This thesis deals with regularization parameter selection methods in the context of Tikhonov-type regularization with Poisson distributed data, in particular the reconstruction of images, as well as with the identification of the volatility surface from observed option prices.
In Part I we examine the choice of the regularization parameter when reconstructing an image, which is disturbed by Poisson noise, with Tikhonov-type regularization. This type of regularization is a generalization of the classical Tikhonov regularization in the Banach space setting and often called variational regularization. After a general consideration of Tikhonov-type regularization for data corrupted by Poisson noise, we examine the methods for choosing the regularization parameter numerically on the basis of two test images and real PET data.
In Part II we consider the estimation of the volatility function from observed call option prices with the explicit formula which has been derived by Dupire using the Black-Scholes partial differential equation. The option prices are only available as discrete noisy observations so that the main difficulty is the ill-posedness of the numerical differentiation. Finite difference schemes, as regularization by discretization of the inverse and ill-posed problem, do not overcome these difficulties when they are used to evaluate the partial derivatives. Therefore we construct an alternative algorithm based on the weak formulation of the dual Black-Scholes partial differential equation and evaluate the performance of the finite difference schemes and the new algorithm for synthetic and real option prices.
|
author2 |
TU Chemnitz, Fakultät für Mathematik |
author_facet |
TU Chemnitz, Fakultät für Mathematik Rückert, Nadja |
author |
Rückert, Nadja |
author_sort |
Rückert, Nadja |
title |
Studies on two specific inverse problems from imaging and finance |
title_short |
Studies on two specific inverse problems from imaging and finance |
title_full |
Studies on two specific inverse problems from imaging and finance |
title_fullStr |
Studies on two specific inverse problems from imaging and finance |
title_full_unstemmed |
Studies on two specific inverse problems from imaging and finance |
title_sort |
studies on two specific inverse problems from imaging and finance |
publisher |
Universitätsbibliothek Chemnitz |
publishDate |
2012 |
url |
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-91587 http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-91587 http://www.qucosa.de/fileadmin/data/qucosa/documents/9158/Dissertation_Nadja_Rueckert.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/9158/signatur.txt.asc |
work_keys_str_mv |
AT ruckertnadja studiesontwospecificinverseproblemsfromimagingandfinance |
_version_ |
1716473276013740032 |