Studies on two specific inverse problems from imaging and finance

This thesis deals with regularization parameter selection methods in the context of Tikhonov-type regularization with Poisson distributed data, in particular the reconstruction of images, as well as with the identification of the volatility surface from observed option prices. In Part I we examine t...

Full description

Bibliographic Details
Main Author: Rückert, Nadja
Other Authors: TU Chemnitz, Fakultät für Mathematik
Format: Doctoral Thesis
Language:English
Published: Universitätsbibliothek Chemnitz 2012
Subjects:
PET
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-91587
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-91587
http://www.qucosa.de/fileadmin/data/qucosa/documents/9158/Dissertation_Nadja_Rueckert.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/9158/signatur.txt.asc
id ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-qucosa-91587
record_format oai_dc
spelling ndltd-DRESDEN-oai-qucosa.de-bsz-ch1-qucosa-915872013-01-07T20:05:32Z Studies on two specific inverse problems from imaging and finance Rückert, Nadja Tikhonov-Regularisierung Kullback-Leibler Totale Variation Poissonverteilte Daten Bildverarbeitung Wahl des Regularisierungsparameters Diskrepanzprinzip L-Kurve Quasi-Optimalitätskriterium PET Black-Scholes-Modell Volatilität Dupire Call-Option Regularisierung durch Diskretisierung Parameter Identifikationsalgorithmus Tikhonov-Regularization Kullback-Leibler Total Variation Poisson distributed data Regularization parameter selection methods discrepancy principle L-curve method quasi-optimality criterion PET Black-Scholes model volatility Dupire call option regularization by discretization parameter identification localization algorithm imaging finance ddc:515 ddc:519 Tichonov-Regularisierung Black-Scholes-Modell Volatilität Regularisierungsverfahren Poisson-Verteilung Bildverarbeitung Call-Option Parameter <Mathematik> This thesis deals with regularization parameter selection methods in the context of Tikhonov-type regularization with Poisson distributed data, in particular the reconstruction of images, as well as with the identification of the volatility surface from observed option prices. In Part I we examine the choice of the regularization parameter when reconstructing an image, which is disturbed by Poisson noise, with Tikhonov-type regularization. This type of regularization is a generalization of the classical Tikhonov regularization in the Banach space setting and often called variational regularization. After a general consideration of Tikhonov-type regularization for data corrupted by Poisson noise, we examine the methods for choosing the regularization parameter numerically on the basis of two test images and real PET data. In Part II we consider the estimation of the volatility function from observed call option prices with the explicit formula which has been derived by Dupire using the Black-Scholes partial differential equation. The option prices are only available as discrete noisy observations so that the main difficulty is the ill-posedness of the numerical differentiation. Finite difference schemes, as regularization by discretization of the inverse and ill-posed problem, do not overcome these difficulties when they are used to evaluate the partial derivatives. Therefore we construct an alternative algorithm based on the weak formulation of the dual Black-Scholes partial differential equation and evaluate the performance of the finite difference schemes and the new algorithm for synthetic and real option prices. Universitätsbibliothek Chemnitz TU Chemnitz, Fakultät für Mathematik Prof. Dr. Bernd Hofmann Prof. Dr. Bernd Hofmann Prof. Dr. Christine Böckmann 2012-07-20 doc-type:doctoralThesis application/pdf text/plain application/zip http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-91587 urn:nbn:de:bsz:ch1-qucosa-91587 http://www.qucosa.de/fileadmin/data/qucosa/documents/9158/Dissertation_Nadja_Rueckert.pdf http://www.qucosa.de/fileadmin/data/qucosa/documents/9158/signatur.txt.asc eng
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Tikhonov-Regularisierung
Kullback-Leibler
Totale Variation
Poissonverteilte Daten
Bildverarbeitung
Wahl des Regularisierungsparameters
Diskrepanzprinzip
L-Kurve
Quasi-Optimalitätskriterium
PET
Black-Scholes-Modell
Volatilität
Dupire
Call-Option
Regularisierung durch Diskretisierung
Parameter Identifikationsalgorithmus
Tikhonov-Regularization
Kullback-Leibler
Total Variation
Poisson distributed data
Regularization parameter selection methods
discrepancy principle
L-curve method
quasi-optimality criterion
PET
Black-Scholes model
volatility
Dupire
call option
regularization by discretization
parameter identification localization algorithm
imaging
finance
ddc:515
ddc:519
Tichonov-Regularisierung
Black-Scholes-Modell
Volatilität
Regularisierungsverfahren
Poisson-Verteilung
Bildverarbeitung
Call-Option
Parameter <Mathematik>
spellingShingle Tikhonov-Regularisierung
Kullback-Leibler
Totale Variation
Poissonverteilte Daten
Bildverarbeitung
Wahl des Regularisierungsparameters
Diskrepanzprinzip
L-Kurve
Quasi-Optimalitätskriterium
PET
Black-Scholes-Modell
Volatilität
Dupire
Call-Option
Regularisierung durch Diskretisierung
Parameter Identifikationsalgorithmus
Tikhonov-Regularization
Kullback-Leibler
Total Variation
Poisson distributed data
Regularization parameter selection methods
discrepancy principle
L-curve method
quasi-optimality criterion
PET
Black-Scholes model
volatility
Dupire
call option
regularization by discretization
parameter identification localization algorithm
imaging
finance
ddc:515
ddc:519
Tichonov-Regularisierung
Black-Scholes-Modell
Volatilität
Regularisierungsverfahren
Poisson-Verteilung
Bildverarbeitung
Call-Option
Parameter <Mathematik>
Rückert, Nadja
Studies on two specific inverse problems from imaging and finance
description This thesis deals with regularization parameter selection methods in the context of Tikhonov-type regularization with Poisson distributed data, in particular the reconstruction of images, as well as with the identification of the volatility surface from observed option prices. In Part I we examine the choice of the regularization parameter when reconstructing an image, which is disturbed by Poisson noise, with Tikhonov-type regularization. This type of regularization is a generalization of the classical Tikhonov regularization in the Banach space setting and often called variational regularization. After a general consideration of Tikhonov-type regularization for data corrupted by Poisson noise, we examine the methods for choosing the regularization parameter numerically on the basis of two test images and real PET data. In Part II we consider the estimation of the volatility function from observed call option prices with the explicit formula which has been derived by Dupire using the Black-Scholes partial differential equation. The option prices are only available as discrete noisy observations so that the main difficulty is the ill-posedness of the numerical differentiation. Finite difference schemes, as regularization by discretization of the inverse and ill-posed problem, do not overcome these difficulties when they are used to evaluate the partial derivatives. Therefore we construct an alternative algorithm based on the weak formulation of the dual Black-Scholes partial differential equation and evaluate the performance of the finite difference schemes and the new algorithm for synthetic and real option prices.
author2 TU Chemnitz, Fakultät für Mathematik
author_facet TU Chemnitz, Fakultät für Mathematik
Rückert, Nadja
author Rückert, Nadja
author_sort Rückert, Nadja
title Studies on two specific inverse problems from imaging and finance
title_short Studies on two specific inverse problems from imaging and finance
title_full Studies on two specific inverse problems from imaging and finance
title_fullStr Studies on two specific inverse problems from imaging and finance
title_full_unstemmed Studies on two specific inverse problems from imaging and finance
title_sort studies on two specific inverse problems from imaging and finance
publisher Universitätsbibliothek Chemnitz
publishDate 2012
url http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-91587
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-91587
http://www.qucosa.de/fileadmin/data/qucosa/documents/9158/Dissertation_Nadja_Rueckert.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/9158/signatur.txt.asc
work_keys_str_mv AT ruckertnadja studiesontwospecificinverseproblemsfromimagingandfinance
_version_ 1716473276013740032